

Providing a Unique STEM Education Opportunity with a Five Day ELEO Mission

Robert Twiggs ¹, Amin Djamshidpour ¹, Matt Craft ¹, Dale Nash ², Hank Voss ³

- 1 Twiggs Space Lab (TSL)
- 2 Virginia Commercial Space Authority
- 3 Near Space Launch (NSL)

New Spacecraft & Launch Program

Launch Costs vs Orbit Life

Launch Costs vs Orbit Life

Spacecraft Costs vs Orbit Life

Spacecraft Costs vs Orbit Life

Is there a need for a short orbit life?

- STEM education attention span
- Low Cost
- Rapid repeat missions
- Getting through the mission cycle
- Scheduling

New Spacecraft & Launch Program

Using the Antares Cygnus ISS Supply Mission

Release from Second Stage

Release from Second Stage

Release from Second Stage

April 27, 2017

1600

Planned Program

Orbital ATK

Release from Second Stage

Four Canisterized Satellite Dispensers Here

1

14th Cal Poly CubeSat Workshop April 27, 2017

Figure: Twenty one Thin-Sats are flipped sequentially for space optimization with antennas and for centering the center of mass.

84 ThinSats

Four 3U CSD fastened together. Isolators fastened to the base

21 ThinSat/CSD released in groups of seven, connected together with stiff nitinol wire

Advantages of Antares Launch

- Release PicoSat at an altitude of 200 km – 250 km
- Orbit life of approximately 5 days
- No lasting orbital debris

Target Customers

- STEM K-12
- Jr Colleges
- University Lower Division

• ELEO Research

Mission Objectives

- Get DATA
- You build your sensor board
- All Hardware Provided ThinSat
- Communications with GlobalStar

Repeatable Launches

Antares ISS Resupply Missions

ThinSats burn up in the atmosphere after approximately five days on orbit

ThinSat link and ground segment data verified down to reentry region.

Conclusion

- Low Cost
- Repeatability
- Available Hardware and Launches

Question?

Backup Slides

The three Phases of this mission provides a STEM program that allows the students over a 9-12 month period make meaningful measurements of the environment correlated with the National Science standards for K-12.

Phase 3 Extreme LEO Environment

Phase 2 Near Space Environment

Phase 1 Near Earth Environment

Phase 1

10 Satellite kits 2 large party balloon launch kits 1 ground station with Wi-Fi Database and dashboard Teacher training Activity – build and run weather stations, launch 1 on a balloon as a test, launch a 2nd one on Earth Day with everyone else. Collect and analyze in

Phase 2 Tentative Plans

- Near Space Launch
- Data comms link
- Database and dashboard
- Teacher feedback session on missions

Activity – build weather sats satellites based on learning in Phase 1. Launch to near space, collect data and analyze.

Phase 3

- Prototype a ThinSat from what we have in our class kits
- Commission ThinSats
 build
- If permitted, elect one learner to attend launch event
- Launch ThinSats collect data over 5 days

Activity – design and launch our own satellite into space. Analyze the data collected.

Phase 2 Experiments: 4 Balloon Launches

Phases 2 and 3

xCHIPS are incorporated into the ThinSat using a payload motherboard and connectors Data transferred by Global Star radio to the same dashboard at the schools

Student Payload Space

Option Configurations

14th Cal Poly CubeSa April 27, 2017