

Moog Capabilities for CubeSat Launch and Deployment

14th Annual CubeSat Developer's Workshop Joe Maly, Marissa Stender, Chris Loghry 27 April 2017

Presentation Overview

- Moog background
 - Moog Space Access and Integrated Systems
- Moog is a flexible partner and can work at any level of a mission
 - Components through launch infrastructure and integration
 - Mission conceptualization through advanced systems
- Moog works in several areas of the CubeSat market
 - Propulsive Multi Payload Carriers (SL-OMV)
 - Multi Payload Carriers (ESPA, ESPA Grande)
 - New ESPA class capability following Delta Qualification test program
 - Launch Environment Mitigation (ShockWave, SoftRide)

Company Background

- Founded in 1951 by Bill Moog
- Headquarters in East Aurora, NY
 - Over 300 Acre Facility
- Global Company
 - -25 Countries
- ~11,000 Employees Worldwide
- \$2.41 Billion in Revenue (FY 2016)
- Aerospace, Defense, Industrial
- Precision Control Systems Solutions and Component Provider

Moog Space and Defense Group Information

- Broad Reach Engineering

Solutions for Every Stage of a Space Mission

REVOLUTIONIZING THE WAY TO SPACE

Propulsion Actuation Avionics Structures Power

Moog Space Access & Integrated Systems

OMV work is mainly supported by Moog personnel in Golden, CO, Mountain View, CA and Chatsworth, CA

- Moog Integrated Systems provides a focal point to harness the breadth and depth of Moog capability
 - Mission architecture/design
 - Launch strategy
 - Spacecraft systems engineering
- Moog works with customers at the initial stages to identify and optimize technical, cost, risk and programmatic trades
- Moog has supported trades and developed concepts for:
 - Commercial GPS-RO Weather constellation
 - Commercial Broadband Satellite Mega Constellation
 - NASA Asteroid Return Mission
 - Non-traditional Mars Mission
- Numerous mission concepts based on Orbital Maneuvering Vehicle (OMV)

COMET – Commercial ESPA Tug

- An OMV to meet the needs of rideshare passengers and constellations by performing the role of a "tug" to drop-off payloads in their ideal orbits
 - The small, fixed solar array allows the OMV to perform multiple burns, phasing maneuvers, RAAN adjustments and/or delivery to BEO (eg. Lagrange point orbits) with a single configuration
- Key Specifications
 - Vehicle mass 406 kg, Propellant mass 153 kg
 - Monoprop hydrazine
 - 4 x 22N DeltaV thrusters, lsp = 233 s
 - 6 x 5N ACS thrusters
 - 4-, 5-, or 6-port ESPA ring, 42" tall, 62" diameter
 - Up to 1500 kg of Port-mounted Payload
 - Altitude: 350 km to 1200 km
 - Inclination: 45 degrees to Sun-synchronous (varies with altitude: 96.85° to 100.42°)
- Baseline Mission Class: Hybrid C/D
- Commercial Variant targeting sub-\$10M price point
- Target Beginning of Hardware Procurement: June 2017
- Flight Readiness: Early 2019

COMET – Commercial ESPA Tug

Launch Configuration with 5 x 300 kg Small Spacecraft

Platform Only (Solar Array Removed)

Leveraging Low Cost Launch for Resilient Constellations

Small Launch OMV (SL-OMV)

- Adapter designed for "light" primary payload (<300 kg) and smaller diameter LV fairing
 - 24" to 38.81" Bolt Circle interface, 20" Height
- Minimal mass and maximum payload capacity
 - Composite cylinder adapter
 - Compatible with multiple CubeSat dispensers
 - Tyvak RailPOD (shown)
 - FANTM-RAIL
 - Teton Aerospace dispenser
 - Planetary Systems CSD (shown)
- $\Delta V > 125$ m/s fully loaded (e.g. 16 x 3U)
 - Vehicle Wet Mass: ~70 kg
 - With 16 x 3U or 6 x 6U = 150 kg
- Modularity
 - Flexible adapter diameter and height
 - Customizable quantity of dispensers

38.8" Diameter

OMV Family Flexibility

- The OMV, SL-OMV, and ESPA can be used in conjunction
- SL-OMV can be a "payload" on an ESPA Grande port
 - Can be used for LEO and potentially direct inject to MEO/GEO launches
 - Can be part of "Freight Train to Space"
- SL-OMV can be a "payload" on an OMV
 - OMV can be used for large transfers
 - SL-OMV can be used to deploy payloads
 - Strong resiliency options using "nested propulsive adapters"

Moog Multi-Payload Carriers

FANTM-RIDE

CubeStack Wafer

Small Launch Adapter and SL-OMV (Ø38")

ESPA

ESPA 6-15-24 LCROSS

ESPA 4-15-24 DSX

ESPA 2-15-24-4PT EAGLE

SL ESPA 15

Flat Plate Adapters

SL ESPA 24

ESPA n-d-h n=number of ports, d=port diameter (inches), h=ring height (inches)

ESPA 5-24-42 SHERPA

OMV (Ø62")

Copyright 2017 Moog Incorporated

Modular ESPA Options

- ESPA diameter (bolt circle) range Φ31.5" to Φ120"
- ESPA ring heights to 42"
 - Minimum ESPA Grande height 32"
 - Special forgings available for rings up to 60"
 - Small Launch ESPA with 8" ports is 15" high
- Port configuration
 - Standard port diameters are Φ15", Φ24"
 - Custom diameters driven by customer needs
 - 3- or 4-point mounts for discrete separation systems and hosted payloads
 - Mixed port designs are feasible
- Number of ports selected by customer
 - Maximum number limited by ring diameter
- Special features
 - Internal flanges
 - Mounting bosses
 - Custom access and mounting holes

Re-Defining ESPA Class

- ESPA payload capability was established with qualification testing in 2002 using 10g/10g design load factors
 Defined 400lb at 20" (181kg at 51cm) as "ESPA-Class" payload
- Following STP-1 lessons learned, ESPA port design was modified to facilitate integration
 - "Boss" port substantially increased strength and stiffness
 - Effectively built in a "no-test" factor of safety in ESPA structure
 - 5/16" fastener option further enhances capability
- Delta Qualification Program at AFRL September 2016 quantified ESPA port capacity with 8.5g/8.5g load factors
 - Delta-Qual ESPA test article had both 5/16" and 1/4" port fasteners
 - Satellite design, separation systems, isolation hardware capability are impacted by heavier cantilevered payloads

Delta Qualification Results

- Testing performed in September 2016
 - All load cases were executed with no evidence of yielding or other damage
 - Model correlation was demonstrated by comparing measured and predicted strains in high-stress regions near ports
- ESPA capability demonstrated for Heavy Payloads with 5/16" fasteners and Light Payloads with ¼" fasteners
 - Heavy APL 710 lb (320 kg) with CG at 20" (51 cm) from ESPA port
 - Light APL 485 lb (218 kg) with CG at 20" (51 cm)
 - PPL 17,000 lb (7711 kg) with CG at 120" (305 cm) above standard interface
- Similar testing will be performed on ESPA Grande in 2017

SoftRide Launch Vehicle Heritage

SoftRide has flown 39 times on 13 launch vehicles Extensive heritage for the world's only system that provides Whole Spacecraft Isolation

Vibration/Shock Isolation for CubeSat Launch

- Cyclic loading contributes significantly to CubeSat failures*
 - Random vibration and shock
 - Thermal loading
 - Pressure, vacuum, humidity cycling
 - Assembly cycles
- Vibration isolation (low-pass mechanical filter) greatly reduces payload accelerations
 - Moog CSA SoftRide has flown on 39 launches since 1998
- ShockWave (patent pending) for CubeSats introduced at Workshop 2016

* Methods to predict fatigue in CubeSat structures and mechanisms, W. Holemans, Planetary Systems Corp., 12th Annual Summer CubeSat Developers' Workshop, August 2015

ShockWave Product Line

- First product in ShockWave family introduced 2016
- Features
 - Low-cost
 - Short lead times
 - Modularity
 - Easy integration
- Can be used for launch shock and/or on-orbit isolation
 - CubeSat dispensers
 - CubeSat payloads
 - Component isolation for jitter-sensitive applications, i.e., lasercom
 - Non-space industrial applications

ShockWave Testing at Planetary Systems

- Testing performed during 6U CSD qualification program at PSC
- Dispenser mounted to vibration table with eight ShockWave isolators

SPACE AND DEFENSE GROUP

Copyright 2017 Moog Incorporated

Measurements at PSC with/without ShockWave

Isolators are cheap insurance against mission failure

ShockWave SW-150-1000-190 Specifications

ICDs available on request

- - 2. RADIAL: 200 lbs

ShockWave SW-150-1000-190 Nominal Stiffness				
Configuration		20 Hz	50 Hz	100 Hz
-7575	Axial (lbf/in)	10000	12500	15000
	Lateral (lbf/in)	6000	7500	9500
	Loss (% structural)	>30	>40	>40
-75H1	Axial (lbf/in)	2300	2700	3200
	Lateral (lbf/in)	4400	5800	7900
	Loss (% structural)	>40	>40	>40

10-32 Mounting Threads from Captive Fastener

Summary

- Family of Propulsive Multi Payload Carriers (OMV)
 - Commercial ESPA Tug COMET
 - Small Launch OMV SLO-MV
- Multi Payload Carriers
 - ESPA increased payload capacity based on test
 - ESPA Grande (24-inch port) test in coming year
- Launch Vibration Isolation
 - SoftRide and ShockWave

Contact Info

Please contact us with any questions or potential applications you would like to discuss

- Joe Maly
 - jmaly@moog.com
 - 650-960-4226
- Marissa Stender
 - mstender@moog.com
 - 720-557-3872
- Chris Loghry
 - <u>cloghry@moog.com</u>
 - 818-734-3445

