

RFTSAT:

Demonstrating Passive RF Sensor Tags Using Backscatter Data Communication

Cassie Wade

Northwest Nazarene University

Daniel Slemmer, Curtis Garner, Lucas Schamber, Jordan Poundstone, Brandon Pankey

Dr. Joshua Griffin, Dr. Stephen Parke, Dr. Dan Lawrence

April 27, 2017

RF Backscatter communication allows for wide range distributed sensing.

RF Backscatter communication utilizes a carrier wave with modulated backscattered signals to send data.

RF power is maximized by antenna gain and transmitted power.

Power-Up Link Budget:

$$P_t \propto \frac{P_{Tx}G_{Tx}G_t}{r^2}$$

 P_t = Power received at the tag

P_{Tx} = Power transmitted by the reader

 P_{R} = Power received at the reader

Bistatic Backscatter Link Budget:

$$P_R \propto \frac{P_{Tx}G_{rx}G_{Tx}G_t^2}{r^4}$$

G_t = Gain of tag antenna

 \mathbf{G}_{Tx} = Gain of reader tx antenna

- **G**_{rx} = Gain of reader rx antenna
- **r** = radius between reader and tag

Backscatter communication provides many benefits and in-space applications.

Benefits:

- Low powered: $10\mu W 10mW$
- Typically small: few square inches, 40g
- Perform basic computing functions
- Integrated on space craft after deployment

RF Backscatter communication provides many applications for wide range distributed sensing in space.

RF Backscatter communication provides many applications for wide range distributed sensing in space.

The NNU RFTSAT team is creating a 3U CubeSAT to perform an *insitu* technology demonstration of RF backscatter communication.

Mission success is achieved through incremental data measurements.

Mission success is achieved through incremental data measurements.

RFTSAT consists of six subsystems.

RFTSAT has enough power for its subsystems.

Power	Subsystem	Power (W)	
P _{IN}	Solar Panel	1.80	
P _{RFIDTx}	Reader	0.27	
P _{RFID} Standby	Reader	0.18	
P _{EPS}	EPS	0.5	
P _{IB}	Interface Board	0.10	
P _{motor}	Boom	0.04	
P _{radioTx}	Simplex	0.08	
P _{radioStandby}	Simplex	0.20	
P _{optional}	Additional Payload	0.06	
Power In (W)		1.80	
Power Out (W)		1.43	
Margin		0.37	
NOTE: ALL CALCULATIONS ASSUME A 1.5-HOUR ORBITAL TIME			

The RF System on RFTSAT has sufficient range for mission success.

RFTSAT will be ready for launch late 2018.

Acknowledgments

- 2016 NASA Undergraduate Student Instrument Project (USIP) Student Flight Research Opportunity (SFRO) Grant Program
- Georgia Tech Propagation Group
- NearSpace Launch
- Composite Technology Development
- Caldwell High School

Figure 1 - ISS:

http://www.universetoday.com/118175/ammonia-leak-on-the-iss-forcesevacuation-of-us-side-crew-safe/

Figure 2 - RF Tag:

MS thesis Bashir Akbar, http://hdl.handle.net/1853/43666/

Figure 3 - CubeSAT Rendezvous:

https://www.google.com/search?q=cubesat+rendezvous&espv=2&source=l nms&tbm=isch&sa=X&ved=0ahUKEwja-o6Y-qnTAhUP-GMKHe8jD8kQ_AUIBigB&biw=1707&bih=827#imgrc=B-KjobEcDl0aAM:

Questions?

Power-Up Link Budget:

$$P_t = \frac{P_T G_{Tx} G_t \lambda^2 \tau}{(4\pi r)^2}$$

- **P**_t = Power received at the tag
- P_{Tx} = Power transmitted by the reader
- $\mathbf{P}_{\mathbf{R}}$ = Power received at the reader

Bistatic Backscatter Link Budget:

$$P_R = \frac{P_{Tx}G_{rx}G_{Tx}G_t^2\lambda^2\tau}{(4\pi r)^4}$$

G_t = Gain of tag antenna

- $\mathbf{G}_{\mathbf{Tx}}$ = Gain of reader tx antenna
- **G**_{rx} = Gain of reader rx antenna
- **r** = radius between reader and tag

Component	Mass (kg)
EPS/EyeStarRadio & Battery Stack	0.42
Aluminum Structure	1.20
Solar Panels	0.50
Interface Board	0.04
RFID Reader & Antenna	0.09
RFID Tag	0.04
Boom System	<0.30
Amateur Radio & Antenna	0.18
Camera	<0.10
Fasteners & Potting	0.50
Total	3.37

- Passive Attitude Control
- Magnet that will align with Earth's magnetic field

Image: http://space.stackexchange.com/questions/1599/passive-attitude-stabilization-with-magnets-are-there-studies-based-on-actual

Reaching 100m Distance

Link Budget Parameters

- $\mathbf{G}_{\mathbf{t}} = \mathbf{G}_{\mathbf{Tx}} = \mathbf{G}_{\mathbf{rx}} = 10$ dBi
- **λ** = 0.5 cm

τ = 1

