

Micro-propulsion development activities at Cal Poly

> Dr. Amelia Greig Aerospace Engineering Department Cal Poly, San Luis Obispo agreig@calpoly.edu

Cal Poly Micro-Propulsion

Current Major Project: 'Pocket Rocket'

- Optimize design
- Integration into a 1U CubeSat
- Test of integrated system

Other Current Projects

- Micro-Newton Thrust Balance Four-arm pendulum Non-contact displacement sensor
- Flight Qualification Facilities Upgrade/Expand for Propulsion

Future Projects

- Electrospray/Colloid Design, development and testing Starting Summer 2017
- Electric Propulsion Simulations Hybrid regime (high and low pressure) Starting Fall 2017

Pocket Rocket

Electrothermal Plasma Thruster Designed for CubeSats

Heating occurs in bulk propellant Continuous or pulsed operation Can also operate as a cold gas thruster

Pocket Rocket - Performance

Estimated Pocket Rocket performance and comparisons

Thruster	Specific Impulse	Power	Thrust	Propellant Flow Rate
Cold Gas Thruster ¹	40s	NA	1mN	1mg/s
Pocket Rocket ²	80s	10 W	2.6mN	1mg/s
Argon Resistojet ³	85s	50 W	100mN	100mg/s

- 1) Calculated using Pocket Rocket dimensions
- 2) Estimated from experimental temperature measurements
- 3) Sitael XR-Resistojet Range (http://www.sitael.com/wp-content/uploads/2015/10/XR-family.pdf)

The 'Pocket Rocket' Collective

Pocket Rocket - Integration

Currently being fully integrated into a 1U CubeSat by Cal Poly students

- Thruster
- Electronics
- Propellant storage and feed
- Control system

Argon Gas Canister

Integrated 1U system will be ground tested

- Remote Vacuum Operation
- Thermal Vacuum
- Thrust Measurements
- Vibration Test

DC-RF Driver

Pocket Rocket – DC-RF Driver

Working CubeSat sized DC-RF generator developed by Prof. Juan Rivas-Davila and Wei Liang at Stanford University Power Electronics Research Lab (SUPERLab) <u>superlab.stanford.edu</u>

Current Aims:

- Reduce board size to <9.5cm
- Reduce VDC input

Photo credit: SUPERLab@Stanford

Pocket Rocket – Test Video

Mylar Strip (visual aid) Large experimental housing

Initial operation as cold gas thruster

Then operated in pulsed (plasma) mode at 2.8 W

SUPERLab RF-DC Driver

Micro-Newton Thrust Balance

Current resolution estimate: 20µN Desired resolution: 2µN

Cal Poly Micro-Propulsion – Recap

Current Major Project: 'Pocket Rocket'

- Optimize design
- Integration into a 1U CubeSat
- Test of integrated system

Other Current Projects

- Micro-Newton Thrust Balance Four-arm pendulum Non-contact displacement sensor
- Flight Qualification Facilities Upgrade/Expand for Propulsion

Future Projects

- Electrospray/Colloid Design, development and testing Starting Summer 2017
- Electric Propulsion Simulations Hybrid regime (high and low pressure) Starting Fall 2017

Open to suggestions/collaborations