Broadband InfraRed Compact High-resolution Exploration Spectrometer: Lunar Volatile Dynamics for the Lunar Ice Cube Mission

P.E. Clark, CalTech/Jet Propulsion Laboratory, Science PI Morehead State University PI, Bus, Ground Communication, Science Operations: B. Malphrus (PI), B. Twiggs, Jeff Kruth, Kevin Brown, M. Coombs, R. McNeill; NASA/GSFC Payload: C. Brambora, T. Hurford, R. MacDowall, D. Reuter, W. Farrell, D. Patel, S. Banks, E. Mentzell, R. Manriquez; NASA/GSFC Flight Dynamics: D. Folta, P. Calhoun; Busek Propulsion: M. Tsay, J. Frongillo; Vermont Technical College Software: C. Brandon, P. Chapin

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

www.nasa.gov

© 2016. All rights reserved.

Government sponsorship acknowledged.

California Institute of Technology

April 2017

Lunar Ice Cube Science Goals

		NASA SP; AG		
		roadmaps		
IR measurements	Water ice	Understand origin and		
associated with volatiles	abundance,	role of volatiles.		
in the 3 micron region	location,	Measure, monitor,		
at = 10 nm spectral</td <td>transportation</td> <td>characterize areas</td>	transportation	characterize areas		
resolution to assess	physics on lunar	associated with		
global scale variations in	surface	volatile activity.		
thermal and				
photometric conditions				
Broadband (1-4 micron)	Water ice	Understand origin and		
NIR measurements	abundance,	role of volatiles.		
associated with major	location,	Measure, monitor,		
minerals. Previous	transportation	characterize areas		
mission maps slope,	physics on lunar	associated with		
maturity, mineralogy.	surface	volatile activity.		
	Water ice	Understand origin and		
	abundance,	role of volatiles.		
	location,	Measure, monitor,		
	transportation	characterize areas		
	physics on lunar	associated with		
	surface	volatile activity.		
	IR measurements associated with volatiles in the 3 micron region at = 10 nm spectral<br resolution to assess global scale variations in thermal and photometric conditions Broadband (1-4 micron) NIR measurements associated with major minerals. Previous mission maps slope, maturity, mineralogy.	IR measurements associated with volatiles abundance, in the 3 micron region at = 10 nm spectral<br/ resolution to assess global scale variations in surfaceWater ice abundance, location, transportation physics on lunar global scale variations in surfaceBroadband (1-4 micron) NIR measurements associated with major minerals. Previous mission maps slope, maturity, mineralogy.Water ice abundance, location, transportation physics on lunar surfaceWater ice abundance, nocation, transportation physics on lunar surfaceWater ice abundance, location, transportation physics on lunar surface		

Technology Goals Demonstrate Enabling Technologies for Interplanetary Cubesats

- Innovative Busek BIT-3 RF Ion Propulsion System
- Highly Miniaturized GSFC BIRCHES Point Spectrometer
- Inexpensive, Quasi-COTs, Radiation Tolerant Morehead State University 6U Interplanetary CubeSat bus
- Innovative Use of Low Energy Trajectories developed at GSFC FDF
- Robust Flight Software Systems written in Spark Ada by Vermont Tech
 - Modified eHaWK Power Array- highest power >90W CubeSat

April 2017

Species	μm	description							
Water Form, Component									
water vapor	2.738	OH stretch							
	2.663	OH stretch	B r		Ū.				
liquid water	3.106	H-OH fundamental	0.100	~					
	2.903	H-OH fundamental				17			
	1.4	OH stretch overtone	1			//			
	1.9	HOH bend overtone	1						
	2.85	M3 Feature		Þ	+//	/			
	2.9	total H2O	0.095	+	Y/	1			
hydroxyl ion	2.7-2.8	OH stretch (mineral)	2Ce			1			
	2.81	OH (surface or structural) stretches	star		Y				
	2.2-2.3	cation-OH bend	llec		t\				
	3.6	structural OH	Rei	он	lce				
bound H2O	2.85	Houck et al (Mars)	0.090	.s					
	3	H2O of hydration	1		()				
	2.95	H2O stretch (Mars)	1						
	3.14	feature w/2.95	1		Water				
adsorbed H2O	2.9-3.0	R. Clark			V				
ice	1.5	band depth-layer correlated	260	0 2800	3000 32	200 3400	3600		
	2	strong feature			Wavelength (nm)				
	3.06	Pieters et al			vavelengti				
Other Volatiles			Ice (Cube	measure	ments	wi11		
NH3	1.65, 2. 2.2	N-H stretch		Cube .	measure		VV 111		
CO2	2, 2.7	C-O vibration and overtones	encomp	bass the	e broad 3	um ba	and to		
H2S	3		distingu	uish ox	verlanning	OH	water		
CH4/organics	1.2, 1.7, 2.3, 3.3	C-H stretch fundamental and overtones				011,	10		
Mineral Bands			and ice	feature	s. Will ha	ve near	10 nm		
pyroxene	0.95-1	crystal field effects, charge transfer	resoluti	on in th	is band				
olivine	1, 2, 2.9	crystal field effects		1.3.1	2	11	10		
spinels	2	crystal field effects		200	Mallan		1.1		
iron oxides	1	crystal field effects		17. LEV	renow = v	vater-	1.000		
carbonate	2.35, 2.5	overtone bands			related fe	atures in			
sulfide	3	conduction bands			the 3 mic	ron regio	n		
hydrated silicates	3-3.5	vibrational processes		0.0			4		

anticipate wavelength of peak for water absorption band to be structural<bound<adsorbed<ice

BIRCHES Instrument

CDW Clarketal BIRCHES on Lunar Ice Cube

5

April 201

Spectrometer Schematic and Components

BIRCHES utilizes a compact Teledyne H1RG HgCdTe Focal Plane Array and JDSU linear variable filter detector assembly leveraging OSIRIS REx OVIRS.

Adjustable Iris maintains footprint size at 10 km by varying FOV regardless of altitude

April 2017

6

COTS AFRL developed AIM SX030 microcryocooler with cold finger to maintain detector at ≤115K and iris controller

April 2017

CDW Clarketal BIRCHES on Lunar Ice Cube

8

BIRCHES Observation Requirements

Requirement

A footprint of 10 km from an altitude of 100 km

Footprint 10 km in along track direction regardless of altitude, consecutive observations separated by a couple of kilometers; greater overlap of consecutive tracks at poles, separted by a couple of kilometers

- FOV of the instrument will be 100 mrad (6°)
- An Adjustable Field Stop (AFS) shall maintain the FOV to 10 km in size
- Based on spacecraft velocity exposures shall be taken at intervals of 2.7 seconds (TBC)

Vavilov Crater: 100 km in diameter 1º S, 138º W

April 2017

Current Challenges

Thermal Design: major cubesat challenge. Thermal models indicate dedicated radiator maintains temperature of optics box <220K, BIRCHES instrument maintained within operational range. All aluminum design of optical bench minimizes impact of terminator-equator temperature variation. Calibration of optical system will allow anticipated minimal effects to be removed. Microcryocooler maintains detector <115 K.

Optics: Cover will be needed to prevent sunlight from entering instrument. Minimal mass and volume impact solutions being explored. Adjustable Field Stop design allows window spot size to be maintained over changes in altitude from 10 to 100 km.

Human-rated launch vehicle challenges: Very high Vibration and Shock survival in original requirements documents: deployer design will mitigate and original margins were very high Very large survival temperature range in requirements documents: partially mitigated by 'rolling' spacecraft once Orion deployed +1.5 hours) Solutions being negotiated.

Radiation: Attention being paid to NEPP by entire team thanks to efforts of Cliff Brambora

Communication, navigation and tracking: DSN developing new capabilities for multiplexing communication. Iris version 2 provides much improved bandwidth at expense of power.

Data Management: PDS requirement at PDR presents major challenge.

Conclusions

- IceCube to place an IR spectrometer in lunar orbit to look for surface OH, water, other volatiles
- Examines changes in surface volatile content as function of temperature and illumination conditions to get at dynamics issues! (like Sunshine et al., 2009 observation)
- Utilizes MSU cubesat bus with Busek propulsion and commercial subsystems modified for deep space, GSFC payload and flight dynamics expertise with low energy manifolds to lunar capture, and JPL science PI and deep space communication expertise
- Creating a tailored solution with a standard platform.
- Our goal is to deliver high priority measurements on lunar volatiles via a HEOMD NextSTEP mission selected to demonstrate technology for propulsion and compact volatile-detecting instrument capability

LunarCubes Are Here!!!!

pamela.e.clark@jpl.nasa.gov

April 2017

Backup Slides

April 2017

Lunar IceCube versus Previous Missions					4		
Mission	Finding	IceCube	(T).	3	•		
Cassini VIMS,	surface water detection, variable	water & other volatiles,	0	0.08	• *		1 1 3
Deep Impact	hydration, with noon peak absorption	fully characterize 3 µm	ĉ	0.00	/		
Chandrayaan	H2O and OH (<3 microns) in	region as function of	ta		U		
M3	mineralogical context nearside snapshot	several times of day for	e	0.96 -			A to a mi
	at one lunation	same swaths over range	efl	-			1.0
LCROSS	ice, other volatile presence and profile	of latitudes w/ context of	α (0.94			1.1
	from impact in polar crater	regolith mineralogy and	eq			4 . O a	0.73
LP, LRO, LEND	H+ in first meter (LP, LEND) & at	maturity, radiation and	20		1. 1	A	
LAMP	surface (LAMP) inferred as ice	particle exposure, for	E	0.92 -		2	
DVNR	abundance via correlation with	correlation w/ previous	Ве	-		1.11	
LOLA	temperature (DIVINER), PSR and PFS	data	8	0.90 -	atte		
LROC, LADEE	(LROC, LOLA), H exosphere (LADEE)		20				

'snapshot' lunar M3 nearside indicating surface coating OH/H₂O (blue) near poles (Pieters et al, 2009)

Table B.2 IR measured volatile abundance in							
LCROSS plume (Colaprete et al, 2010)							
Compound	Molecules cm ⁻²	Relative to $H_2O(g)^*$					
H2O	5.1(1.4)E19	100%					
H2S	8.5(0.9)E18	16.75%					
NH3	3.1(1.5)E18	6.03%					
SO2	1.6(0.4)E18	3.19%					
C2H2	1.6(1.7)E18	3.12%					
CO2	1.1(1.0)E18	2.17%					
CH2OH	7.8(4.2)E17	1.55%					
CH4	3.3(3.0)E17	0.65%					
OH	1.7(0.4)E16	0.03%					
*Abundance as described in text for fit in Fig 3C							

14

Mare Imbrium Morning

(3) Mare Humboldtianum Afternoon 9) Mare Humboldtianum Evening

3.2

Wavelength (µm)

3.4

OH

in

(M) Mare Imbrium Noon

3.0

Early evidence for diurnal trend

absorption by Deep Impact

(Sunshine et al. 2009) which

will be geospatially linked by

2.8

Lunar IceCube.

Contin 0.88

0.86

variation

Baseline Success Criteria					
Lunar Surface Coverage for same swaths as function of 3 or more times of day	Minimum 10% near equator, 100% at poles for 6 month mission				
Polar regional coverage for overlap with two other orbiters	TBD				
Equatorial periapsis for symmetrical coverage	100 km +/- 5 km vertical/horizontal				
Footprint	<300 sq km				
Spectral resolution @ 3 µm	10 nm				
Avoid 3 micron region saturation	preflight loaded and tested software to control adjustable aperture size. combine integration periods as necessary.				
Downlink of collected data	128 kbps to downlink all science data daily				
dynamic range in water-related abundances	Four orders of magnitude				
Access to Phase 1 and 2 data (last slide)	Deliver to PDS EDRs. Incorporate NAIF/SPICE for positioning and pointing information. Level 1 products to include calibrated data, more as resources permit, leveraging community resources				

Bus Components

Propulsion: 2U Busek Gimbaled Iodine Ion Propulsion Drive (EP) with external e- source to offset charge build up. Models indicate no contamination problem.

Thermal Design: with minimal radiator for interior the small form factor for BIRCHES means that interior experiences temperatures well within 0 to 40 degrees centrigrade, except for optics box which has a separate radiator. Thermal modeling funded via IRAD work.

Communication, Tracking: X-band, JPL Iris Radio, dual X-band patch antennas. MSU has 21-m dish that is becoming part of the DSN. Anticipated data rate 128 kb/s

C&DH: very compact and capable proton 400K (trade volume, complexity, cubesat heritage, live with the fact this hasn't flown in deep space)

GNC/ACS: Modified Blue Canyon system. Multi-component (star trackers, IMU, RWA) packages with heritage available, including BCT XB1, which can interface with thrusters (trade cost, volume, cubesat heritage, live with the fact this hasn't flown in deep space)

April 2017

Lunar IceCube ConOps

Not to scale

Other EM1 Mission Complimentarity

Figure 1: LunaH-Map cut-away showing spacecraft components and configuration. Inset image shows LunaH-Map deployed configuration.

Lunar Flashlight: Detect surface ice for PSRs polar region by measuring laser stimulated emission at several ice-associated lines.

LunaH Map: Detect ice in top layer (tens of centimeters) of regolith for PSRs polar region by measuring decrease in neutron flux (anti-correlated with protons) using neutron spectrometer.

Lunar IceCube: Determine water forms and components abundances as a function of time of day, latitude, and lunar regolith properties using broadband point spectrometer.

April 2017

Case	Lat	ToD	Temp K	Reflectivity Total Signal @ 3um photons/sec		SNR	Band depth/PPM water		
							0.1/1000	0.05/500	0.01/100
1	0	87	163	3254	2760	52	276	138	27
2	60	0	335	39045	26400	162	2640	1320	264
3	20	65	304	24279	20963	145	2096	1480	210
4	0	0	395	150777	52800	230	5280	2640	528

CDW Clarketal BIRCHES on Lunar Ice Cube

4

File ...