BioSentinel - A Deep Space Radiation BioSensor Mission

Bob Hanel – Project Manager James Chartres – Mission Systems Engineer Hugo Sanchez – Spacecraft Bus Systems Engineer

CubeSat Developers Workshop 2017 Cal Poly, San Luis Obispo, CA 4/26/17

Authors Affiliated with NASA Ames Research Center, Moffett Field, CA

- Advanced Exploration Systems (AES) selected BioSentinel to fly on the Space Launch System (SLS) Exploration Mission (EM-1) as a secondary payload
 - Payload selected to help fill HEOMD Strategic Knowledge Gaps in Radiation effects on Biology
 - Delivery to Dispenser Integrator, Tyvak, by 4/30/18
 - Current EM-1 Launch Readiness Date (LRD): 9/30/18
- Key BioSentinel Project Objectives
 - Develop a *deep space nanosat* capability
 - Develop a *radiation biosensor* useful for other missions
 - Define & validate SLS secondary payload interfaces and accommodations for a biological payload
- Collaborate with two other AES selected missions(non-biological) for EM-1
 - Near Earth Asteroid (NEA) Scout (MSFC)
 - Lunar Flashlight (JPL)

BioSentinel Science Concept

- Quantify DNA damage from space radiation environment
 - Space environment cannot be reproduced on earth
 - Omnidirectional, continuous, low flux with varying particle types
 - Health risk for humans spending long durations beyond LEO
 - Radiation flux can spike 1000x during a Solar Particle Event (SPE)
- Correlate biologic response with LET Spectometer data
 - BioSensor payload uses engineered S. cerevisiae yeast
 - Measures rate of Double Strand Breaks (DSB) in DNA
 - Linear Energy Transfer (LET) Spectrometer measures particle energy and count
- Yeast assay uses microfluidic arrays to monitor for DSBs
 - Three strains of S. cerevisae, two controls and engineered strain
 - Wet and activate multiple banks of micro-wells over mission lifetime
 - DSB and associated repair enable cell growth and division
 - Activate reserve wells in event of a Solar Particle Event (SPE)

Secondary Payload Location on SLS EM-1

- 13 dispenser locations that each support a 6U (14 kg) secondary payload
- 1 bracket location allocated to a sequencer
- EM-1 only accommodates 6U payloads; EM-2 may accommodate 12U payloads CubeSat Developers Workshop 2107 – April 26, 2017

BioSentinel EM-1 Mission

Launch

Artist's rendering of the Space Launch System

•

•

- Lunar Transfer & **BioSentinel: Escape** into Heliocentric Orbit Fly-by **Mission Orbit** Lunar Transit BioSentinel orbit 3-7 days Earth orbit Ŷ Secondary P/L Launch Deployment Venus orbit (L+4-5 hrs) Up to 13 secondary payloads deployed and Final orbit of secondary's to be determined ٠ • powered within the same 2 hour window Will likely be Earth-interior, heliocentric orbit
 - Far outside the LEOs typically occupied by CubeSats
 - Range to Earth of 0.73 AU at 18 months
 - Far outside the protective shield of Earth's magnetosphere

CubeSat Developers Workshop 2107 - April 26, 2017

Low relative velocity between secondary payloads

BioSentinel will not perform a delta-V maneuver,

will follow ICPS into disposal orbit

BioSentinel FreeFlyer Spacecraft: Physical Overview

BioSensor – Optical Measurement of Yeast in Fluidic Card Well

9-Card Manifold with Bubble Traps & Desiccant

 Nutrient Supply Manifold with Electronics
 BioSensor 9-Card Manifold Assembly

 CubeSat Developers Workshop 2107 – April 26, 2017

Radiation LET spectrometer supplied by JSC RadWorks

- Both LET EDUs have been delivered to ARC
- LET EDU#1 will be used to support a EDU spacecraft bus level vibe and thermal test.
- LET EDU#2 used in Flatsat testing
- First Flight Unit delivery to Ames scheduled for 5/31/17.

Solar Array: 2-Panel Gimbal, Adding 2-Panels

BioSentinel 2-Panel Gimballed Solar Array EDU

- 1-Panel deployment test
- 2-Panel gimbal test

BioSentinel with 4-Panel Solar Array.

The plan is to keep the 2-panel Gimbaled Hawk array deployed from the 1x3 U sides (trifolds) and then add 2 - 2x3U panels that are also hinged to the gimbal housing

Propulsion System, XACT, & Battery Packs

Propulsion System

XACT ADCS unit sandwiched between 2 battery packs (top & bottom)

Spacecraft Subsystem Fit CheckFit

Initial fit check of Structural Panels, Propulsion System, XACT, 2 Battery Packs, Iris Transponder Thermal Simulator, Sun Sensor, Dispenser Separation Connector

Thermal challenge is to keep warm spacecraft bus subsytems isolated from BioSensor (4-6°C). Cards raised to 23°C during cell growth phase

BioSentinel Mission Phases

Phase	Entry	Exit	Duration	Summary & Objectives
Pre-Launch	Loading of biology	L/V Lift-off	~6 months	 Configure BioSentinel for launch, then power-off
Launch	L/V Lift-off	Launcher Deploys BioSentinel	~5 hours	Powered offSurvive launch environments and deployment
Initialization	BioSentinel separates from SLS	Complete S/C checkout	~14 days	 Power-on, reduce tip-off rates, deploy solar arrays, transition to safe mode Ground station initial acquisition and tracking Check-out of S/C systems Lunar fly-by likely to occur
Science	Nominal Spacecraft SOH	Final BioSensor card is expired	365 days (goal of 540)	 Collect data from all payloads Execute card experiments per science timeline Respond to SPE events Collect Spacecraft SOH
Decommissioning (note, not same as Project Phase F)	End of Nominal Science Operations	Final pass with decommissioning command	~7 days	 Ensure all data downlinked Solar array switches open to ensure battery never recharges

BioSentinel Link Margin (dB) vs. Mission Days

BioSentinel Month-in-the-Life ConOps

Ground System Architecture

 $\frac{1}{2} = \frac{1}{2} = \frac{1}$

Preliminary Operational Staffing Profile

Mission Phase	Length	Mission Operations Staffing Profile	Assumptions/Comments
Pre-Launch	~ 30 day	 4x5 support for monitoring of BioSentinel DSGC pre-launch profile 	 DSGC must start while BioSentinel is at KSC
Launch & Ascent	~ 1 day	- Full team will staff the MOC	 BioSentinel is powered off. No real- time stream of data from S/C into the MOC during L&A
Initialization	~ 14 days	 24x7 console support for L + 5 days to check out S/C bus systems, ensure payloads are functional, perform orbit determination and update activity plan 	 Launch dispersions and deployment uncertainty will require BioSentinel re-plan cycle. No propulsive maneuver to achieve heliocentric orbit.
Science (early)	~ 60 days	 8x5 console support to monitor first two biosensor experiments and to assist in planning and executing calibration activities as needed Surge support if needed 	- Autonomous momentum dumping
Science (routine)	~ 305 days	 One planning cycle every week with goal of two weeks Uplink console supports once per week, available for other with notice Continuous trending of S/C bus data Console staff on-call to respond to SPE 	 Review of DSN schedule every month, for three months in the future Limited real-time changes to schedule and plan except for SPE response
Extended Science	~ 180 days	- Continuation of Science	

Questions & Back-Up Charts

BioSentinel FreeFlyer Spacecraft Bus Summary

- LEON3 RT based C&DH Space Dynamics Lab
 - Embedded VxWorks OS with cFS/cFE
 - Port of LADEE FSW for Bus
 - Port of EcAMSat / SporeSat FSW for P/L
- 3-axis controlled GNC system
 - XACT Integrated GN&C Unit Blue Canyon
 - 3 Reaction Wheels
 - Star Tracker
 - CSS, IMU for safe mode
 - 5° pointing requirement
- Propulsion Lightsey Space Research
 - 3D printed system
 - Null tipoff rates and momentum management
 - Seven cold gas R236cf thrusters
 - ~60 sec lsp
 - ~200 grams propellant
- Communications
 - X-Band to DSN @ 62.5 8000 bps
 - LGA and MGA patch antennae JPL
 - IRIS v2.1 coherent transponder JPL

- Power
 - ~64 W generated power EOL
 - 2- Panel gimballed deployable HaWK arrays & 2 additional 2x3 U deployable panels - MMA
 - Panasonic 18650 batteries
 - ARC design EPS and switch controllers
- Structure
 - 6U nominal volume
 - ARC Nanosat heritage
 - EcAMSat provided baseline for BioSentinel development
- Thermal
 - Cold biased system
 - Heaters, thermistors, paint, reflective tape for control
- Supports Payloads
 - Yeast based BioSensor Payload
 - LET Spectrometer *JSC RadWorks*
 - 4U volume

Overview - Orbital Impact on Communications

- Mission Management Bob Hanel, Dawn McIntosh, James Chartres, Mario Perez, Elwood Agasid, Vas Manolescu, Matt D'Ortenzio
- Science Sharmila Bhattacharya, Sergio Santa Maria, Diana Marina, Macarena Parra, Tore Straume, C. Mark Ott, Sarah Castro, Greg Nelson, Troy Harkness, Roger Brent
- **Payload** Charlie Friedericks, Rich Bielawski, Eric Tapio, Tony Ricco, Travis Boone, Ming Tan, Aaron Schooley, Mike Padgen, Lance Ellingson, Griffin McCutchenson, Diana Gentry, Dayne Kemp, Scott Wheeler, Susan Gavalas, Edward Semones
- Spacecraft and Bus Hugo Sanchez, Matthew Sorgenfrei, Jesse Fusco, Vanessa Kuroda, Craig Pires, Shang Wu, Abe Rademacher, Josh Benton, Doug Forman, Ben Klamm

Affiliations

NASA Ames, NASA JSC - RadWorks, LLUMC, Univ. Saskatchewan

Support

NAŠA Human Exploration and Operations Mission Directorate (HEOMD); Advanced Exploration Systems Division – Jitendra Joshi, Jason Crusan Program Execs.