

DESIGN, DEVELOPMENT, AND OPERATION OF CUBESAT-BASED HF SATCOM

USNA Small Satellite Program

April 26, 2017

MIDN 1/C Tom Giornelli and MIDN 1/C Alyssa Randell

Team Organization

1/C Evans -Team Lead

1/C Scheiner -Comms

1/C Giornelli -ADCS

1/C Randell -HF Systems

1/C Cho -EPS

1/C Gray -Build

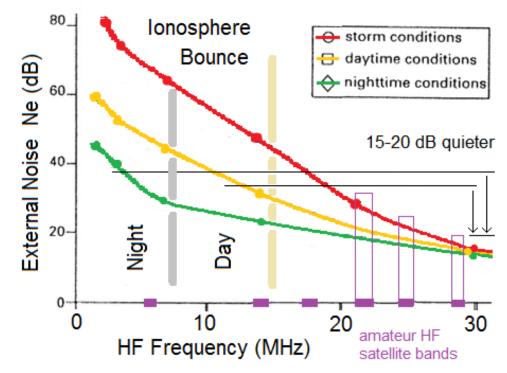
1/C SciglianoOperations

1/C Walker -Software & Safety

1/C Misch -Structures/ Mechanical

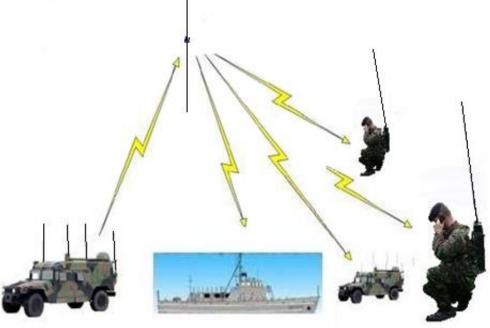
1/C Williams -Telemetry

Overview


- Team Organization
- HF Justification
- Motivation
- Mission
- Mission Objectives
- CONOPS
- Satellite Design
- Conclusion

Main Objective: HF SATCOM

- Provide an alternative form of SATCOM
- 1.5 U CubeSat with HF Transponder payload
- Utilize Radio Amateurs to test and determine useful range of operations
- If successful, implement fleet of similar CubeSats to provide worldwide coverage


Why HF?

- HF is significantly simpler than other SATCOM bands
 - Non-Tracking Antennas
 - Lower noise in satellite bands

HF SATCOM Applications

- Most small DoD assets are already equipped with HF radios
- These same assets often don't have SATCOM access
- Provides alternative in emergencies to assets that do have SATCOM

Motivation

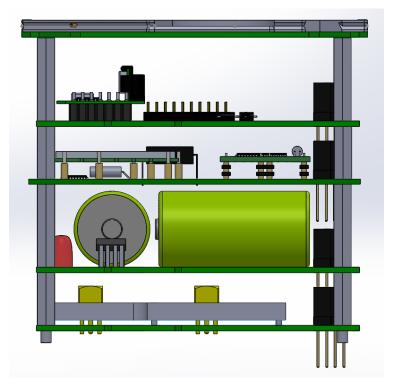
- Improve Communications
 - Demonstration of HF Radio Satellite Communication
 - Utilize Amateur Radio Operators
- Educate USNA Astro-track Midshipmen on Satellite Development Process with Hands-On Experience

Mission

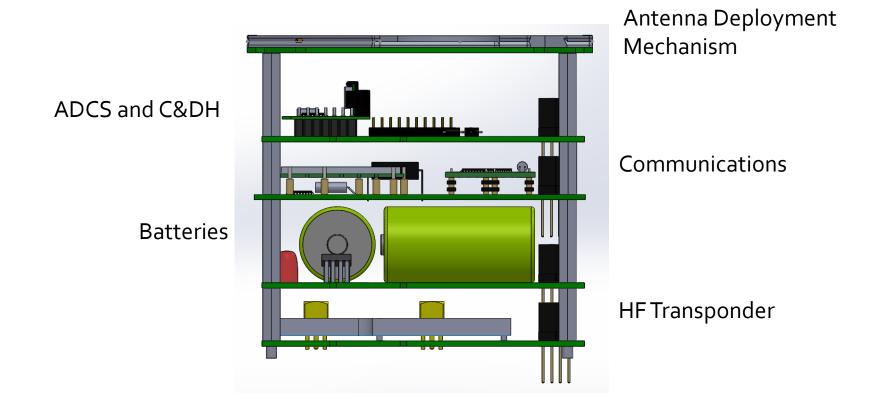
 Design and build a HF-band communications Satellite which is compatible with existing operational DoD radio equipment. By utilizing the HF-band for both uplink and downlink, HFSAT will greatly increase the range of the primary means of communication between small DoD assets for HF radio. This 1.5U CubeSat would be used to explore the potential for wide-spread implementation use of SATCOM for HF radio relay.

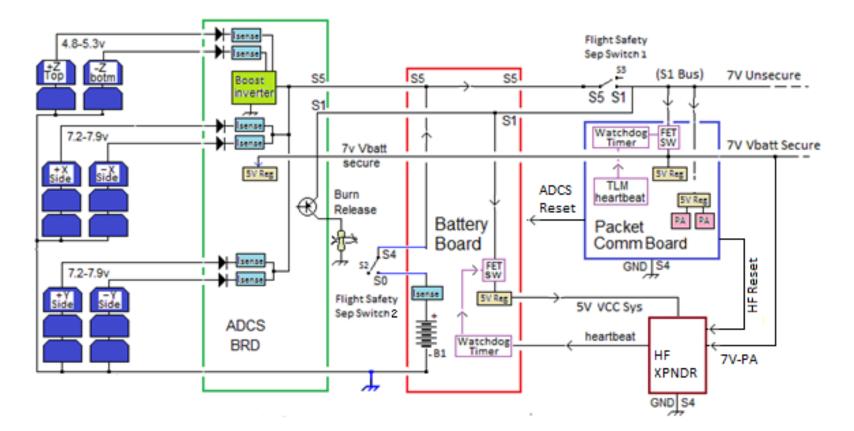
Mission Objectives

- Test HF Radio Satellite Communication Capabilities
- Utilize Amateur Radio Band and Operators
- Educate Midshipmen on Satellite Development Lifecycle


- Our Solution: Build CubeSats with HF SATCOM to fill gap
 - Inexpensive
 - Quick

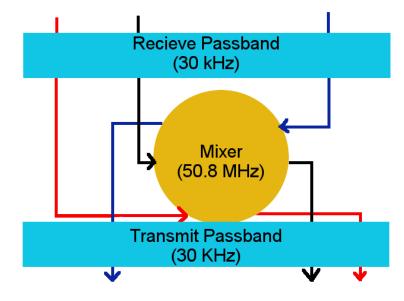
CONOPS


Satellite Overview


Satellite Specifications

Mass	2200 g
Size	1.5 U
Power Generation	2.75 W in Sunlight
ADCS	Gravity Gradient Magnetotorquers
Comms HF	21.4 MHz Up 29.42 MHz Down
VHF	145.825 MHz (Up & Down)

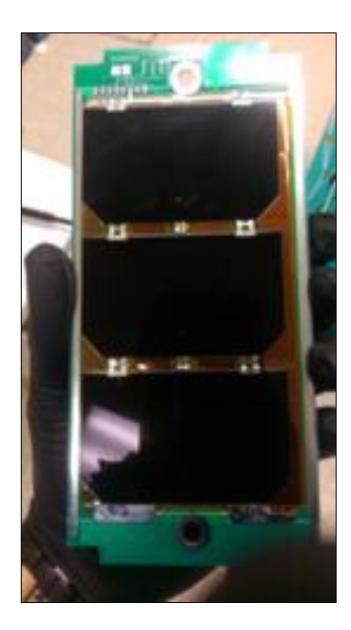
Satellite Design


Power System

Outputs: Vbatt ~ 7V, Regulated 5V

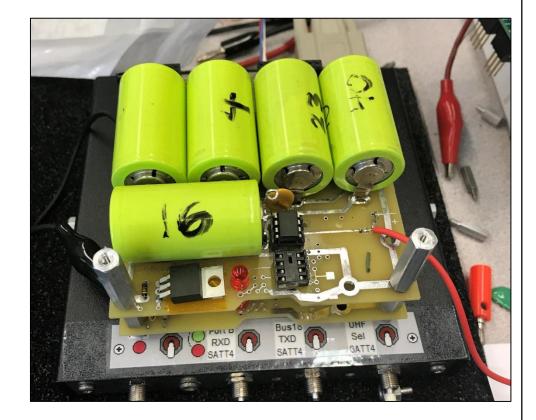
Unique Satellite Features

- Half Wavelength-Dipole HF Radio Antenna
 - Also utilizes tip mass for gravity gradient stabilization
- Linear Inverting Transponder
- 21.4 MHz Uplink
- 29.4 MHz Downlink
- 30 kHz Passband
 - Allows 10 simultaneous users



HFSAT Linear Inverting Transponder

Power System: Solar Panels


- 6 side panels composed of UTJ Solar Cells
- 2.75 W generated in sunlight
- Also act as Magnetotorquers

• Built in-house

Power System: Battery Board

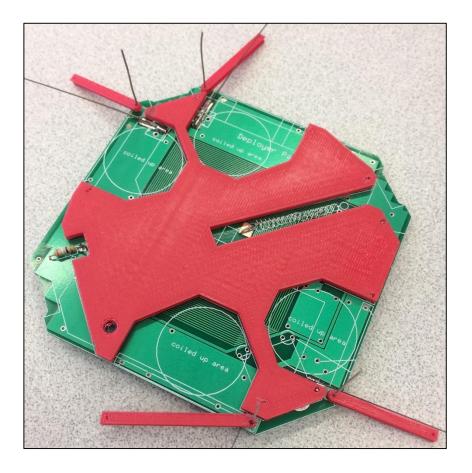
- 5 NiCd Cells
- Battery Capacity: 286 mAh (a) 7V max

VHF Communications

- In addition to HF mission, HFSAT performs VHF packet radio communications
 - Telemetry
 - Command and control
 - User payload mission of APRS user digipeating.
- Uses modified Micro-Trak TinyTrak 4 communications controller (telemetry and command) and APRS digipeater combined with the radio transceiver.
 - Called the SATT4
- Tx/Rx on **145.825 MHz**

USNA SATT4 on its Test Set

MT-TT4


ADCS and C&DH

- Gravity-Gradient Stabilization
 - Dual-duty HF Antenna
- Magnetometers provide control for Solar Panel Magnetotorquers
- C&DH done by Arduino
- Current Sensors

Antenna Design & Deployment

- Nitinol Wire Antennas
- Mechanical Antenna Deployer
 - 3-D printed
- Burn Resistor for Release


Conclusion

Successful Means for Accomplishment of Mission Objectives:

- ✓ Test HF Radio Satellite Communication Capabilities
- ✓ Utilize Amateur Radio Band and Operators
- ✓ Educate Midshipmen on Satellite Development Lifecycle
- Predicted launch mid-2018

Questions?

Further contact: Professor Jin Kang kang@usna.edu