Terrestrial RaYs Analysis and Detection (TRYAD) Cubesat Mission

Division of Atmospheric and Geospace Sciences (AGS)

JM Wersinger, Auburn Univ. Mike Fogle, Auburn Univ. Michael Briggs, Univ. of Alabama - Huntsville Pete Jenke, Univ. of Alabama - Huntsville Georgia De Nolfo, NASA Goddard Space Flight Center

TRYAD Science Overview

Primary Science Goal:

Multi-point Observations of Terrestrial Gamma-ray Flashes (TGFs) to test TGF Beam Models

- What are TGFs?
- History of detecting TGFs
- What is unique about the TRYAD mission?

Short History of TGF Detection

1994 –Burst and Transient Source Experiment (BATSE) on Compton Gamma-Ray Observatory
2005 – RHESSI satellite detected higher energy TGFs
2009 – Gamma-Ray Burst Monitor on Fermi Gamma-Ray Space Telescope first detects TGFs and positrons
Present – thousands of TGFs are detected routinely

- up to 10's MeV Gamma Rays
- μs to ms timescale pulses
- Production models unverified

TRYAD Science Overview

TRYAD uses two 6U CubeSats to make coincident measurements of TGFs and correlates to ground-based lightning detection data

http://wwlln.net/new/map/lightning_map.html

TGFs observed by Gamma Burst Monitor on Fermi

Orbit Inclination: 50° Attitude: 500 km Orbit velocity: 7.6 km/s Orbit Period: 94.5 mins

Typical TRYAD CubeSat Orbit

WWLLN Real Time Lightning Locations

http://wwlln.net/new/map/lightning_map.html

Command and Data Handling System (C&DHS)

- Embedded Linux
- Beagelbone w/ programmable realtime units

Attitude Determination and Control System (ADACS)

- Magnetometers, rate gyros, sun angle sensors, orbit propagator
- Novatel GPS
- Magnetorquers & reaction wheels

Electrical Power System (EPS)

- 60 solar cells (29% eff.)
- Max power point trackers
- 10 Li-ion batteries

Communications

- Globalstar bent pipe COMM
- Full Duplex Command & Control @ 256 kb/s over 45% of orbit
- Simplex telemetry beacons over 90% of orbit

TRYAD 6U CubeSat

Mechanical Systems

- Monolithic Al structure panels
- Driven deployable solar panels
- Passive thermal design

Station Keeping

- Deployable "Dart" configuration for passive orientation augmentation
- Station keeping and satellite separation control via aerodynamic differential drag

Science Payload

- Plastic Scintillation gammaray detector w/ next generation Si photomultipliers (SiPMs)
- >1 M sample/sec event time tagging to 2 μs accuracy in real time (slaved to GPS clock)
- ROI's commanded based on weather and lightning data

Science Payload

Timing Accuracy Goals: 2 μs relative event time tag, 20 μs between CubeSats, 200 μs w.r.t. ground-based VLF detection

Communications

Globalstar Duplex Coverage

Simplex Radio

- Beacon for post-launch phase
- 80-90% orbital coverage
- Abridged telemetry
- Broadcast mode (quasi-roll resistant)

Duplex Radio

- 256 kb/s, full duplex
- 40-50% orbital coverage
- Science Data / Telemetry
- Command & Control
- Requires +/- 40° zenith antenna pointing

Attitude Determination and Control System (ADACS)

Reaction Unit: Magnetorquer + Reaction Wheel

Sun Angle Sensor

Hamamatsu PSD

 $\frac{\text{Magnetorquer}}{180 \text{ x } 60 \text{ x } 5 \text{ mm}}$ $\mu = 0.91 \text{ Am}^2$

Reaction Wheel 45mm brushless DC 8,000 rpm

Rate gyro

Station Keeping via Differential Drag

Min Drag

Max Drag

TRYAD Timeline

AUBURNAL STATES AUBURN University Small Satellite Program space.auburn.edu

FAILU

I2C

51 0400 D ID ID

SPACE PROGRAM

10.00

-

Thank You!

Funded by Division of Atmospheric and Geospace Sciences (AGS)

