IT-SPINS Ionospheric Imaging Mission

Rick Doe, SRI Gary Bust, Romina Nikoukar, APL Dave Klumpar, Kevin Zack, Matt Handley, MSU

14th Annual CubeSat Dveloper's Workshop 26 April 2017

IT-SPINS Ionosphere-Thermosphere Scanning Photometer for Ion-Neutral Studies

- Mission Overview
- Science Sensor
- Attitude Control
- Flight Subsystem Status

Science Goals

- Study how dominant O⁺ ions are lost to charge exchange with H and He atoms at the top of Earth's ionosphere
- Image disruptive ionospheric structures polar cap patches, mid-latitude density plumes, and equatorial bubbles

Ground\$Track\$\$(km)\$

N300\$ Ground\$Track\$\$km)\$ 300\$

Ionospheric Nightglow

- O⁺ ions constitute the primary ionospheric species in the F-region
- In the nighttime F-region ionosphere, UV photons are emitted spontaneously from the recombination of atomic oxygen ions,

 $O^+ + e^- \rightarrow O (5P) + hv_{135.6}$

 O⁺ and e- are in equal number and 135.6 nm emission is proportional to the path integral of [O⁺] squared

Mission Design

- Sample atomic oxygen nightglow in orbit plane from a spinning 3U spacecraft to enable 2D tomographic inversions of 135.6-nm volume emission rate
- Clone 135.6-nm CTIP photometer from the AF/SMC supported SENSE CubeSat mission
- Build bus with significant heritage from MSU FIREBIRD mission
- Develop ADCS approach with IR Earth limb sensing as the primary knowledge sensor for a 2 RPM pitch rate

Mission Implementation

SNR Simulation

• Given the satellite orbit and a background ionosphere (from MSIS), we simulate the looking directions and compute the measured SNR.

SNR Simulation

CubeSat Tiny Ionospheric Photometer - CTIP

Parameter	Specification
Sensitivity	400 counts/R-s
Dark Current	~100 counts/s
Minimum Detectable	0.7 R (SNR = 10)
Signal at $\Delta t = \frac{1}{2} \sec \theta$	
Field of View	3.8°
Stray Light Rejection	< 10 ⁻⁶
Orbit Averaged Power	1.6 W*
Stowed Form Factor	9.5 cm X 9.5 cm X 9 cm
Mass (Margin)	482 g (79 g)
Volume	875 cm ³
Electrical Power &	5 ± 0.2 Vdc
Communication	RS422 Serial
*Assumes 45 minutes standby mode and 5 minutes preheat per orbit	

CTIP Status

- Both Engineering Model and Flight Model at MSU.
- Flight Code at 100% completion.

ADCS Design – Science Flow down Requirements

Spin long axis of the spacecraft about orbit normal at 12° /sec \pm 1.2° /sec per second in the direction of the velocity vector

Maintain spin axis within a +/-1.5° cone about orbit normal

Control rotation rate of the spacecraft to $0 \pm 3^{\circ}$ /sec about the two axes normal to the spin axis

Determine angular orientation of spacecraft to within 0.3° (TBR)

Determine the angular rates of spacecraft to within 0.12° /sec

Orient payload FOV within a $+/-1.5^{\circ}$ cone about the nadir vector (and other targets TBR) during payload commissioning and spectral calibration operations.

ADCS Design – Basic Elements

ADCS Design – "Enhanced" MAI-400 from Maryland Aerospace

ADCS Current State

Status:

- Final Simulation Program delivery soon.
- Hardware delivery soon.
- Space Flight Computer FSW at 80% Completion
- Current Hardware in the loop simulations

Features:

- IT-SPINS Specific "Spin Mode" added to MAI 400 ADCS.
 - Additional Limb Crossing sensors
 - Faster processing

Subsystem Integration

- 3U Solid-Wall CubeSat Chassis from Pumpkin
- Extensive reuse of secondary structural elements from FIREBIRD
- Mass distribution is a key driver
 - MOI and CG
- Major structural modifications:
 - CTIP and ADCS FOVs
 - Cutouts for antenna system and solar array harnesses

Flight Subsystems - Space Flight Computer (SFC)

Status:

- SFC Functional
- Flight Model and Engineering Model Built
- Flight Code at 90% Completion

Features:

- NOR Flash for CMD Sequences
- NAND For Telemetry Storage
- ADCS interface
- Payload (CTIP) interface

Integration Status – Electrical Power System (EPS)

Status:

- EPS is Functional
- Engineering Model Built
- Flight Code at 100% completion

Features:

- Watch Dog Timer (WDT) for system power
- ADCS power not under WDT control, but is resettable.
- EGSE connection which allows any processor to be reprogrammed.

Integration Status – Communication Subsystem

Status:

- Basic functionality with workarounds developed at MSU.
- MSU team awaiting final programming guide from Astrodev LLC.

Off-Nominal Features:

• None.

Integration Status – Electrical Ground Support Equipment

Status:

- EGSE is Fully Functional
- Engineering GSE Built
- EGSE Code at 100% Completion

Features:

- Foot-Switch Deploy simulated
- Battery Charge
- External Power
- Can Program any PIC on Satellite
- Quad FTDI Chip for GSE status, IT-SPINS GSE Link, and ADCS Telemetry.
- TVAC Chamber Power/Telemetry Link

Flight Subsystem – Full Integration

Status:

- Chassis is currently out to fab.
- 3D printed ULTEM battery bracket complete
- Build-up expected to start by end of May

IT-SPINS ELaNa-18 Launch

Mission manifested with ICEsat-2 on a Delta-II vehicle currently scheduled for a late 2018 launch

