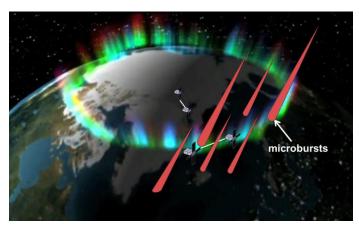

SNIPE mission for Space Weather Research

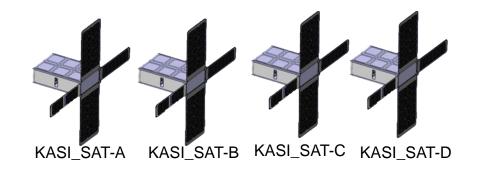
CubeSat Developers Workshop 2017


Jaejin Lee (KASI)

한국전공

New Challenge with Nanosatellites

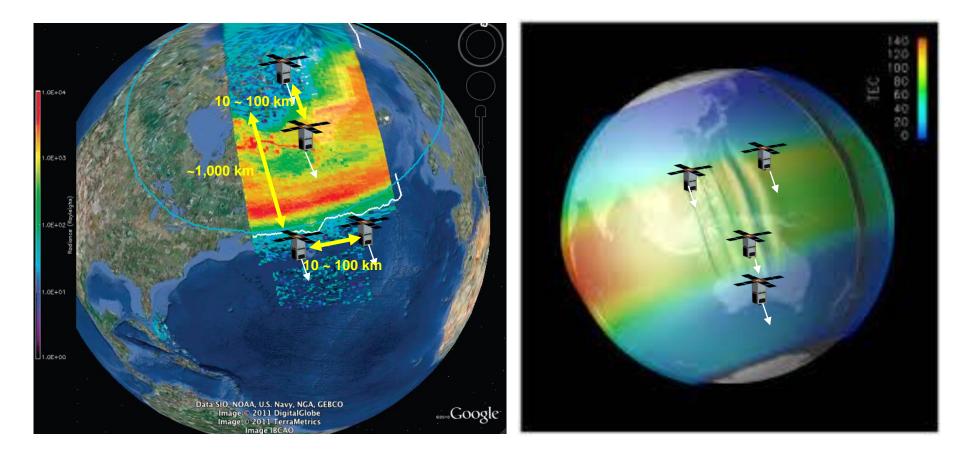
Korean scientific satellite, STSAT-1 (2003) Observation


Small Scale Electron Precipitation

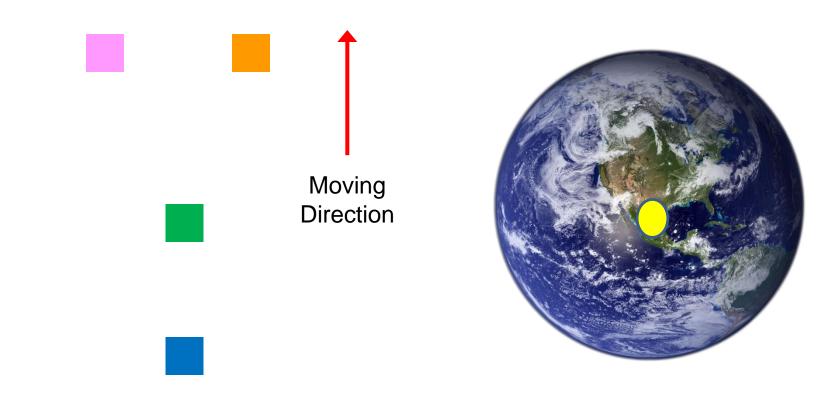
- In observing small-scale plasma structures, single satellite inherently suffers from space-time ambiguity.
- New idea: multi-satellite formation flying enable us to identify temporal and spatial variation
- How: KASI will launch SNIPE mission that consists of four nanosatellites in 2020.

Mission Summary

SNIPE (Small scale magNetosphere and Ionosphere Plasma Experiment)


- Mission: Identifying temporal and spatial variation of small scale plasma structures in lonosphere and Magnetosphere
- Constellation of Four 6U-Nanosats (~10 kg for each satellite)
- Formation Flying (Slow separation from 10 km to 100 km for 6 months)
- Mission Life Time: 1 year (Science Operation (Success Criteria) Time : 6 months)
- Orbit: ~500 km 600 km, Polar Orbit (Sun Synchronous (TBC))
- Launch in 2020

Scientific Objectives

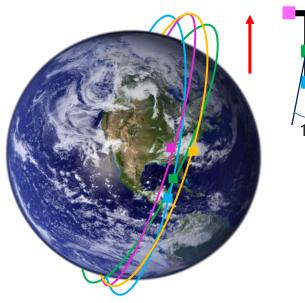

- Spatial scale and energy dispersion of electron microbursts
- Temporal and spatial variations of plasma trough during magnetic storms
- Temporal and spatial variations of electron density and temperature in polar cap patches
- Measuring length of coherence for **bubbles/blobs**
- EMIC waves at the top of ionosphere

Observation by Formation Flying

- Observation of auroral region and equatorial ionospheric instabilities with the same formation.
- Parallel formation identifies spatial variation, while serial pair identifies temporal variation.

T-shape Formation (I)

T-shape Formation (II)

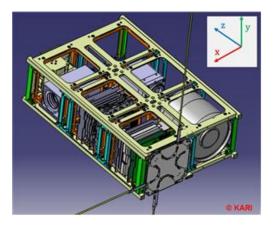

Reference Epoch: 01 Oct 2020 15:14:18:493

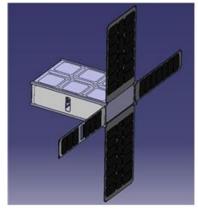
Propulsion System Requirements

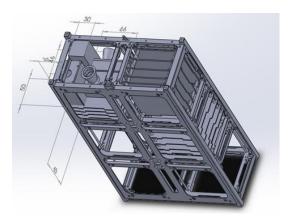
	$\Delta v_{1cycle} = \Delta v_1 + \Delta v_2$	Number of orbit maneuver for 1 year	$\Delta v_{total} = \Delta v_{1cycle} \times n$
Sat a in form 1	$5.36 \times 10^{-2} m/s$	543	29.10 m/s
Sat b in form 1	$5.67 \times 10^{-2} m/s$	543	30.79 <i>m/s</i>
Sat c in form 2	$8.99 \times 10^{-2} m/s$	236	21.22 m/s
Sat d in form 2	$11.87 \times 10^{-2} m/s$	226	26.83 m/s

Disturbances

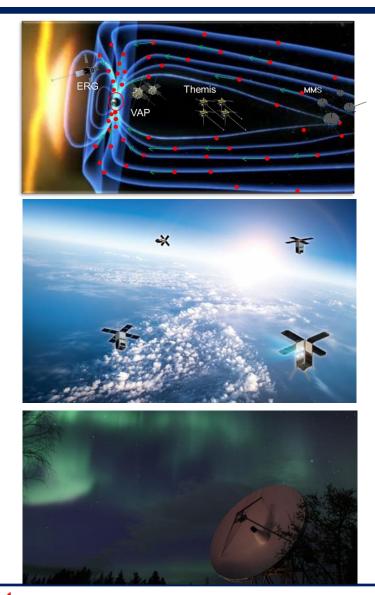
- Gravitational model (JGM3: 70 by 70)
- Air drag (JacchiaRoberts)
- SRP, 3rd bodies(Luna, Sun), Relativistic correction
- Make "T" shape formation on equator
- The formation accuracy of 10 °
- Operate thruster to keep formation 1-2 times a day



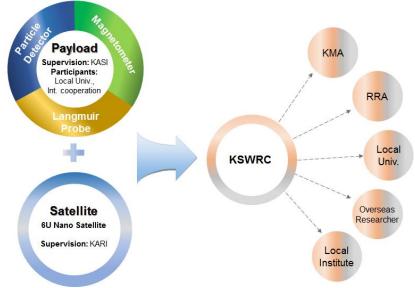

Instruments


Unit	Instruments	Specification	
	SST (Solid State Telescope)	Energy Range: 50- 400 keV Energy channel: 16 ch Two sensors : Parallel and Perpendicular to the geomagnetic field Sampling rate: 100 Hz	
1U for 4 satellites (KASI)	Mag (Flux Gate Magnetometer)	Range: -40,000 – 40,000 nT Resolution: 0.1 nT Sampling rate: 10 Hz	
	LP (Langmuir Probe)	Electron density: 10 ³ - 2×10 ⁶ / cm ³ Electron Temperature: 10 ³ - 10 ⁴ ° K Time resolution : 10 sec (full I-V Curve) 1 sec (Ne, Te) 0.1 sec (Fixed Voltage)	
1U for	Search Coil	Frequency Range: 10 Hz – 10 kHz	
2 satellites (Japan*) * Japan te	Electro-Static Analyzer	Energy Range: 10 eV – 10 keV al to JAXA and now is under review.	

Spacecraft Platform


ADCS	Three-axis attitude control by reaction wheels Field align attitude control during microburst observation Accurate GPS system for position and velocity determination	
CDHS	Time Sync between OBC and payloads Reliable communication between OBC and payloads with CAN BUS protocol	
EPS	High efficiency solar cells High capacity Li-ion batteries	
COMS	High speed S-band for science data downlink UHF command uplink Telemetry downlink: VHF	
Propulsion	High performance micro-thruster	

Science Operation


- Science operation at the conjugate points
 with large missions, Themis, MMS, VAP,
 ERG, GOES etc.
- Multipoint observation with other low earth orbit satellites like ICON, POES, DMSP, SWARM, many Cubesats etc.
- Cooperation with ground observation like EISCAT, Intermag etc.

Cooperation

- Korea Astronomy and Space Science Institute (KASI)
- Payload development
- Mission management and operation
- Cooperate with local universities and overseas cooperation institution (e.g., NASA, Japan)
- Data processing and distribution via project of Korea Space Weather Research Center (KSWRC)

Korea Aerospace Research Institute (KARI)

- Development of nanosatellite bus system
- Yonsei University
- Development formation flying algorithm
- Japan (Kyoto University, JAXA ISAS, Nagoya University, Kanazawa University)
- Development of Science Instruments

THANK YOU