Miniaturized Ion and Neutral Mass Spectrometer for CubeSat Atmospheric Measurements

M. Rodriguez, N. Paschalidis, S. Jones, E. Sittler, D. Chornay, P. Uribe, NASA Goddard Space Flight CenterT. Cameron, ADNET

Science Need - Mini Ion Neutral Mass Spectrometer (INMS)

- Demand is high for in situ measurements of atmospheric neutral and ion composition and density
- Define the steady state background atmospheric conditions
- Study of the dynamic ionosphere thermosphere mesosphere system

High Quality Science in an unprecedented small package!!

> High-resolution, in situ mass and density measurements of [H], [He], [O], [H+], [He+], [O+], will enable investigations in:

- Global atmospheric structure and climatology
- Atmospheric model validation
- Quantification of charge exchange processes
- Characterization of storm-time behavior and response
- Mini-INMS designed to address this need

Initial Opportunities

The ExoCube mission, NSF (PI John Noto, Scientific Solutions)

- First flight opportunity for Mini-INMS
- California Polytechnic State (Calpoly) University built
- 3U CubeSat bus
- 440x675km Orbit altitude, 98 degree inclination
- ELaNa-X SMAP Delta II launch January 31, 2015
- 6-12 month operation (ExoCube ended up operating ~7 months)

National Aeronautics and Space Administration

DELLINER A Path to Compelling Science

The Dellingr mission (NASA Goddard Space Flight Center)

- Second flight opportunity for Mini-INMS
- Internal GSFC project to gain expertise in 6U buses
- Launch scheduled for April 8th 2017
 - Manifested to fly on ISS (SpaceX-12 or OA-7 commercial resupply mission)
 - Subsequent deployment facilitated by NanoRacks (Q2/Q3 2017)
- ISS-like orbit: 51.6° inclination, 400km circular orbit

INMS Overview and Specs

Mini-INMS Overview

- Gated Time-Of-Flight instrument
 - Measuring the velocity of each ion with time of flight over a distance d - gives the mass of the ion according to: M/q = 2 x E/q x TOF² / d
- The mass resolution is limited by uncertainties in energy dispersion, angular distribution and time of flight path

- Measures lons and neutrals simultaneously without duty cycling
 - Two instruments packaged into one
- Neutral side features an ionization chamber and ion repeller
- In house design simulations, optics, and all boards (HV, MV, Gate electronics, ECB, C&DH, ionizer control) developed at GSFC

INMS Specifications

Engineering Specifications	
~13.5cm x 9cm x 9cm	
600g	
1.8W (Ions+Neutrals), 1.3W (ions only)	
1.3kbps (1s sampling)	
±5V, +3.3V, +12v, LVDS and SPI serial communication	

Science Specifications		
FOV	±20°x ±10° around ram	
Mass Dynamic Range	1-40 amu	
Mass Resolution	M/dM ~12	
Energy Dynamic Range	0.1-500eV	
Density Dynamic Range	~10^5 / cm^3	
Sampling time rate	0.1s-10s (1s default setting)	

ExoCube Results

ExoCube Mission Operations

- Weak and infrequent signal due to undeployed antenna
 - Acquired passes using SRI dish antenna, ~2 pass opportunities per week, occasional communication
- Reprioritize instrument checkout and the technology demonstration

ExoCube INMS: First Flight Ion Spectrum, May 20 2015

ExoCube INMS: Flight Neutral Ambient and Outgassing Spectrum, July 15 2015

ExoCube INMS summary

- INMS functionality testing showed the instrument in good health
- All voltages and functionality were validated in flight
- ExoCube INMS flight spectra are consistent with those obtained in the lab
- Unable to obtain science data due to loss of spacecraft communications
- Successful technology demonstration brings INMS to TRL 8!

ONGOING DEVELOPMENT EFFORTS

National Aeronautics and Space Administration

DELLINGR A Path to Compelling Scien

- Delivered July 2016, Launch scheduled for April 2017
- INMS upgrades from ExoCube
 - Ion and Neutral sides are more independent
 - More flexibility to control flux throughput into detector
 - Added electrical and mechanical features for protection against arcing
 - On board calibration feature added
 - Expanded the energy dynamic range of instrument
 - Effective FOV increased

Ongoing and Future Upgrades

- Upgrades ongoing on INMS
 - Increased effective FOV
 - Higher mass resolution techniques being incorporated
 - Modular approaches for flexibility
 - Upgraded Lab and Calibration facility
- Neutral wind and ion drift capabilities being developed for specific science applications
 - Minimal empirical measurements to date
 - None directly measured with mass distributions

Future Missions

- ExoCube 2 NSF Rapid Proposal planned for 2017 for follow up mission
- NASA GSFC Sounding Rocket launch 2018
- Explorer MOO and SMEX mission step 1 being proposed in 2016
- Constellation missions are a prime targets to maximize science and business return
- Planetary missions are applicable
- Looking for partners to increase the flight opportunities for INMS and its upgraded successors

"Ready-to-fly" instrument available now Paschalidis@nasa.gov

Nikolaos.Paschalidis@nasa.gov Sarah.L.Jones@nasa.gov Marcello.Rodriguez@nasa.gov