Broadband InfraRed Compact High-resolution Exploration Spectrometer: Lunar Volatile Dynamics for the Lunar Ice Cube Mission

P.E. Clark, CalTech/Jet Propulsion Laboratory, Science Pl B. Malphrus, Morehead State University, Pl NASA/GSFC Payload: D. Reuter, T. Hurford, R. MacDowall, N. Petro, W. Farrell, C. Brambora, D. Patel, S. Banks, P. Coulter NASA/GSFC Flight Dynamics: D. Folta, P. Calhoun Morehead State University Bus, Mission Ops, Ground Communication: B. Twiggs, Jeff Kruth, Kevin Brown, R. McNeill Busek: M. Tsay, V. Hruby

Vermont Technical College, Flight Software: Carl Brandon, Peter Chapin

EM1 Deployment System for the 'lucky 13'

Jet Propulsion Laboratory

California Institute of Technology

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

www.nasa.gov

With JPL and non-JPL authors: © 2015. All rights reserved.

Government sponsorship acknowledged.

August 2016

Lunar Ice Cube Science Goals

Measurements	HEOMD SKG	NASA SP; AG
		roadmaps
IR measurements	Water ice	Understand origin and
associated with volatiles	abundance,	role of volatiles.
in the 3 micron region	location,	Measure, monitor,
at = 10 nm spectral</td <td>transportation</td> <td>characterize areas</td>	transportation	characterize areas
resolution to assess	physics on lunar	associated with
global scale variations in	surface	volatile activity.
thermal and		
photometric conditions		
Broadband (1-4 micron)	Water ice	Understand origin and
NIR measurements	abundance,	role of volatiles.
associated with major	location,	Measure, monitor,
minerals. Previous	transportation	characterize areas
mission maps slope,	physics on lunar	associated with
maturity, mineralogy.	surface	volatile activity.
	Water ice	Understand origin and
	abundance,	role of volatiles.
	location,	Measure, monitor,
	transportation	characterize areas
	physics on lunar	associated with
	surface	volatile activity.
	Measurements IR measurements associated with volatiles in the 3 micron region at = 10 nm spectral<br resolution to assess global scale variations in thermal and photometric conditions Broadband (1-4 micron) NIR measurements associated with major minerals. Previous mission maps slope, maturity, mineralogy.	MeasurementsHEOMD SKGIR measurements associated with volatiles in the 3 micron region at = 10 nm spectral<br/ resolution to assess global scale variations in thermal and photometric conditionsWater ice abundance, location, transportation physics on lunar surfaceBroadband (1-4 micron) NIR measurements associated with major minerals. Previous mission maps slope, maturity, mineralogy.Water ice abundance, location, transportation physics on lunar surfaceWater ice abundance, nocation, transportation physics on lunar surfaceWater ice abundance, location, transportation physics on lunar surface

Technology Goals

Demonstrate Enabling Technologies for Interplanetary CubeSats

- Innovative Busek BIT-3 RF Ion Propulsion System
- Highly Miniaturized GSFC BIRCHES Point Spectrometer
- Inexpensive, Quasi-COTs, Radiation Tolerant Morehead State University 6U Interplanetary CubeSat bus
- Innovative Use of Low Energy Trajectories developed at GSFC FDF
 - Robust Flight Software Systems written in Spark Ada by Vermont Tech
- Modified eHaWK Power Array- highest power >90W CubeSat

August 2016

Lunar IceCube v	ersus Previous Missions		C 1.0	00	
Mission	Finding	IceCube			
Cassini VIMS,	surface water detection, variable	water & other volatiles,	0 00	08	
Deep Impact	hydration, with noon peak absorption	fully characterize 3 µm	0	" []	
Chandrayaan	H2O and OH (<3 microns) in	region as function of	ta		
M3	mineralogical context nearside snapshot	several times of day for	0.9	96 - ,	and a second
	at one lunation	same swaths over range	efl	. 1	2
LCROSS	ice, other volatile presence and profile	of latitudes w/ context of	<u>۵</u>	94 -	1
	from impact in polar crater	regolith mineralogy and	eq		1 6 Car 5 1
LP, LRO, LEND	H+ in first meter (LP, LEND) & at	maturity, radiation and	20		
LAMP	surface (LAMP) inferred as ice	particle exposure, for	E 0.9	92 -	and the states
DVNR	abundance via correlation with	correlation w/ previous	В		
LOLA	temperature (DIVINER), PSR and PFS	data	E 0.9	90 -	
LROC, LADEE	(LROC, LOLA), H exosphere (LADEE)		3		

Table B.2 IR measured volatile abundance in			
LCROSS plume (Colaprete et al, 2010)			
Compound	Molecules cm ⁻²	Relative to $H_2O(g)^*$	
H2O	5.1(1.4)E19	100%	
H2S	8.5(0.9)E18	16.75%	
NH3	3.1(1.5)E18	6.03%	
SO2	1.6(0.4)E18	3.19%	
C2H2	1.6(1.7)E18	3.12%	
CO2	1.1(1.0)E18	2.17%	
CH2OH	7.8(4.2)E17	1.55%	
CH4	3.3(3.0)E17	0.65%	
OH	1.7(0.4)E16	0.03%	
*Abundance as described in text for fit in Fig 3C			

Early evidence for diurnal variation trend in OH absorption by Deep Impact (Sunshine et al. 2009) which will be geospatially linked by Lunar IceCube.

Mare Imbrium Morning

(3) Mare Humboldtianum Afternoon (9) Mare Humboldtianum Evening

4

(M) Mare Imbrium Noon

Contin Contin

0.86

Species	μm	description		
Water Form, Component				
water vapor	2.738	OH stretch		
	2.663	OH stretch	B	T T T T
liquid water	3.106	H-OH fundamental	0.100	
	2.903	H-OH fundamental		
	1.4	OH stretch overtone		
	1.9	HOH bend overtone		
	2.85	M3 Feature		
	2.9	total H2O	0.095 -	
hydroxyl ion	2.7-2.8	OH stretch (mineral)	20	
	2.81	OH (surface or structural) stretches	star	\mathbf{Y}
	2.2-2.3	cation-OH bend	flee	t\ /
	3.6	structural OH	Re	он Ісе
bound H2O	2.85	Houck et al (Mars)	0.090 -	
	3	H2O of hydration		
	2.95	H2O stretch (Mars)		
	3.14	feature w/2.95		Water 🔰
adsorbed H2O	2.9-3.0	R. Clark		V
ice	1.5	band depth-layer correlated	2600 2	800 3000 3200 3400 3600
	2	strong feature		Wavelength (nm)
	3.06	Pieters et al		wavelength (IIII)
Other Volatiles			Ice Cube	measurements will
NH3	1.65, 2. 2.2	N-H stretch		
CO2	2, 2.7	C-O vibration and overtones	encompass	the broad 3 um band to
H2S	3		distinguish	overlapping OH, water.
CH4/organics	1.2, 1.7, 2.3, 3.3	C-H stretch fundamental and overtones	and is a fast	
Mineral Bands			and ice leat	tres. will have hear 10 nm
pyroxene	0.95-1	crystal field effects, charge transfer	resolution in	this band
olivine	1, 2, 2.9	crystal field effects	1	3 - Z
spinels	2	crystal field effects	2	Vellow - water
iron oxides	1	crystal field effects		renow = water-
carbonate	2.35, 2.5	overtone bands		related features in
sulfide	3	conduction bands		the 3 micron region
hydrated silicates	3-3.5	vibrational processes		

anticipate wavelength of peak for water absorption band to be structural<bound<adsorbed<ice

BIRCHES Instrument

Smallsat Conference 2016 Clarketal Lunar Ice Cube

6

August 201

BIRCHES Observation Requirements

Requirement

A footprint of 10 km from an altitude of 100 km

Footprint 10 km in along track direction regardless of altitude, larger in crosstrack direction above 250 km

Nyquist sampling of the surface

- FOV of the instrument will be 100 mrad (6°)
- An Adjustable Field Stop (AFS) shall maintain the FOV to 10 km in size
- Based on spacecraft velocity exposures shall be taken at intervals of 2.7 seconds (TBC)

Vavilov Crater: 100 km in diameter 1º S, 138º W

August 2016

Spectrometer Schematic and Components

BIRCHES utilizes a compact Teledyne H1RG HgCdTe Focal Plane Array and JDSU linear variable filter detector assembly leveraging OSIRIS REx OVIRS.

Adjustable Iris maintains footprint size at 10 km by varying FOV regardless of altitude

August 2016

Radiator

8

COTS AFRL developed AIM SX030 microcryocooler with cold finger to maintain detector at ≤115K and iris controller

Lunar IceCube ConOps

Not to scale

August 2016

Smallsat Conference 2016 Clarketal Lunar Ice Cube

10

Bus Components

Propulsion: 2U Busek Gimbaled Iodine Ion Propulsion Drive (EP) with external e- source to offset charge build up. Models indicate no contamination problem.

Thermal Design: with minimal radiator for interior the small form factor meant that interior experienced temperatures well within 0 to 40 degrees centrigrade, except for optics box which has a separate radiator. Thermal modeling funded via IRAD work.

Communication, Tracking: X-band, JPL Iris Radio, dual X-band patch antennas. MSU has 21-m dish that is becoming part of the DSN. Anticipated data rate ~ 50 kb/s

C&DH: very compact and capable Honeywell DM microprocessor, at least one backup C&DH computer (trade volume, complexity, cubesat heritage, live with the fact this hasn't flown in deep space)

GNC/ACS: Modified Blue Canyon system. Multi-component (star trackers, IMU, RWA) packages with heritage available, including BCT XB1, which can interface with thrusters (trade cost, volume, cubesat heritage, live with the fact this hasn't flown in deep space)

August 2016

Current status and issues

Data Access and Archiving: subsidized cubesat tool developed underway for stream-lined pipelining and archiving process.

Volume: A chronic problem. Accommodations needed for instrument for more robust microcryocooler and adjustable field stop controllers and propulsion systems especially.

Very high Vibration and Shock survival in original requirements documents: deployer design will mitigate considerably and original margins were very high

Very large survival temperature range in requirements documents: partially mitigated by 'rolling' spacecraft once Orion deployed +1.5 hours)

Radiation issue: Deployment opportunity starts in the second lobe of the Van Allen Belt: 8 to 11 hours to get out...however only relatively small Total Ionizing Dose to deal with.

Communication, navigation and tracking: DSN developing new capabilities for multiplexing communication. Iris version 2 provides much improved bandwidth at expense of power.

Thermal Design: major cubesat challenge. Using dedicated radiator to minimize temperature of optics box <230K. Using microcryocooler to maintain detector <115 K.

August 2016

Conclusions

- IceCube to place an IR spectrometer in lunar orbit to look for surface OH, water, other volatiles
- Examine changes in surface volatile content to get at dynamics issues! (like Sunshine et al., 2009 observation)
- Utilizes MSU cubesat bus with Busek propulsion and commercial subsystems modified for deep space, GSFC payload and flight dynamics expertise with low energy manifolds to lunar capture, and JPL science PI and deep space communication expertise
- Creating a tailored solution with a standard platform

Seattle, WA is the place and it's all about space at LunarScene 2016!

We've combined our highly regarded technical workshops on Lunar Surface Applications and LunarCubes with our Space Entrepreneur workshop and Hack the Moon hackathon for one spectacular, 10 day event.

September 26-27, 2016

The 6th International Workshop on Lunar Surface Applications

There are major opportunities for scientists and space entrepreneurs alike to get new hardware and instruments flying relatively soon and at low cost through privately funded platforms. Learn more about the latest technology, and the recent science and business plans that will fuel the Lunar Renaissance and open the Lunar Frontier, as private companies continue their push to explore space.

September 28-29, 2016 The 6th International Workshop on LunarCubes

Join the best space scientists, engineers, entrepreneurs and investors from around the world to discuss, explore, and redefine the technology, collaboration and commercial strategies required to make the most of LunarCubes, an unprecedented opportunity in space exploration.

September 30, 2016

Entrepreneur Day

Let's hear it for the Entrepreneur! Topics include Entrepreneurship for the Lunar Frontier, Collaboration & Partnerships in New Space and Funding for Space Companies - Tried and True vs. All That's New. This is a hands on training day with experts in the field ... crowd funding, crowd sourcing, and equity funding are just a few of the topics that will be discussed.

October 1-2, 2016

Hack the Moon

At Hack the Moon, students and space enthusiasts have the opportunity to come up with creative solutions to space-related problems, while New Space startups can create and launch their own successful Kickstarter campaigns. This is a hands on workshop - create one or more solutions to a real space problem and you and your team will be eligible for prizes.

www.lunarworkshops.com

pamela.e.clark@jpl.nasa.gov

Join us September 26 - October 2, 2016 for the Lunar Workshop of The Year -LunarScene 2016!

Backup Slides

August 2016

Influences on Measurable Signal at Volatile Bands			
Influences	Effect	Source of Data	
Time of day	hydroxyl, water production/release as function of temperature, solar exposure	Lunar Ice Cube	
Latitude	function of temperature, solar exposure, rougher topography/shadowing near poles	Lunar Ice Cube, Lunar Flashlight, LunaH Map	
Solar output	transient variations induced by solar output or events	LunaH Map	
regolith composition	variation in availability of OH, FeO	M3, Kaguya	
shadowing (slope orientation)	minimal or irregular illumination, lower temperature, potential cold trap	LOLA, LEND, Lunar Flashlight, LunaH Map	
regolith maturity	variation in extent of space weathering induced reduction by hydrogen	M3	
feature type (impact or volcanic construct)	geomorphology induced cold trapping or internal volatile release	Lunar Geology Maps	
age	age-induced structural degradation reduces influence of shadowing	Lunar Geology Maps	
major terrane (highland, maria)	combined age and composition effects	Lunar Geology Maps	

August 2016

Smallsat Conference 2016 Clarketal Lunar Ice Cube

4

Other EM1 Mission Complimentarity

Figure 1: LunaH-Map cut-away showing spacecraft components and configuration. Inset image shows LunaH-Map deployed configuration.

Lunar Flashlight: Detect surface ice for PSRs polar region by measuring laser stimulated emission at several ice-associated lines.

LunaH Map: Detect ice in top layer (tens of centimeters) of regolith for PSRs polar region by measuring decrease in neutron flux (anti-correlated with protons) using neutron spectrometer.

Lunar IceCube: Determine water forms and components abundances as a function of time of day, latitude, and lunar regolith properties using broadband point spectrometer.

August 2016