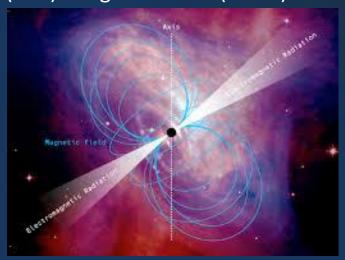
EXACT:

Experiment for X-Ray Characterization and Timing

Speaker

Ryan Vogt

Contributors


Dr. Demoz Gebre Egziabher, Dr. Lindsay Glesener, Hannah Weiher, Joel Runnels, Trevor Knuth, Tim Kukowski, Jeffrey Chaffin, Maxwell Yurs, Kendra Bergstedt

University of Minnesota

Astrophysical Sources of High Energy Radiation

- Solar Eruptive Events
 - Solar Flares
 - Coronal Mass Ejections

Figure 1: (Right) X-ray image of solar flare (NASA). (Left) Image of Pulsar (NASA)

- Non-Solar Astrophysical Radiation Sources
 - Gamma Ray Bursts
 - Pulsars

Solar Eruptive Events

Solar Flares and Solar Cycle

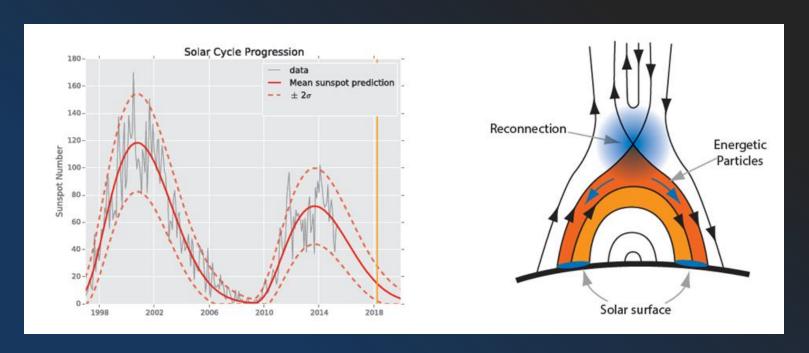


Figure 2: (Left) Sunspot numbers and flare activity in Solar Cycles 23 and 24. (Right) Standard Solar Flare Cartoon (Both *Steven Christe*, 2007)

Solar Eruptive Events

Coronal Mass Ejections (CME)



Figure 3: Coronal Mass Ejection and Earth's Magnetic Field (thewatchers.adorraeli.com)

Solar Eruptive Events: Still Unknown

- Energy Transfer
 - Magnetic fields to kinetic energy
 - Hard X-Ray signature

- Hard X-Ray Emission
 - Solar surface
 - Corona
 - CME cores

Navigation in Space

- Gamma Ray Bursts
 - Large, distant, highenergy EM events
- Pulsars
 - Periodic X-ray radiation source
- Precision timing of events
- Relative timing to give relative position
- Similar to GPS

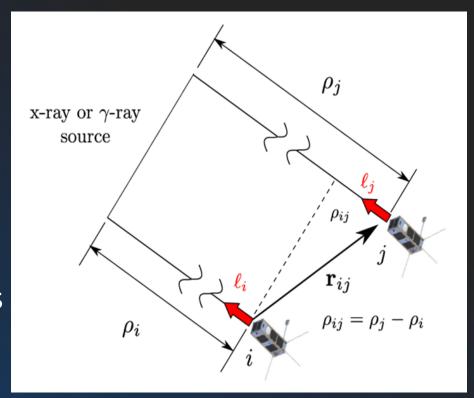


Figure 4: Determination of timing and position using X-Ray and Gamma Ray sources

EXACT: One Project, Two Missions

Shared Requirements: Shared Resources:

- Energy ranges
- Timing requirements
- Sensor requirements

- Project funding
- Expertise and experience
- Two departments

Figure 5: UMN EXACT Project Logo

EXACT Team Structure

Aerospace Engineering (9) Space Physics (10)

PI: Dr. Demoz Gebre Egziabher – PI: Dr. Lindsay Glesener

Sub-system design

Solar activity research

 Component assembly and installation Detector testing and development

Spacecraft ranging

Solar flare characterization

EXACT Team Structure

Undergrad Executive Team:

Project Manager (PM)

Chief Engineer (CE)

Document Specialist

Senior Executive Team:

Dr. Gebre and Dr. Glesener

Executive PM

Executive CE

The EXACT Satellite: GRID

- Gamma Ray
 Incidence Detector
 - Scintillator Detector with 4 CsI(TI) crystals

Student designed

Inexpensive and replicable

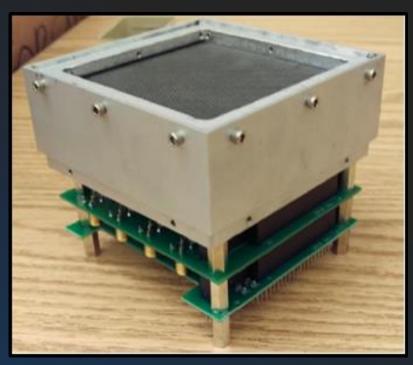


Figure 6: Image of GRID Detector

The EXACT Satellite: GRID

- GRID Detector
 - Redesign in progress
 - Time precision
 - Energy resolution
 - Continued Testing
 - At UMN
 - High Altitude Student Platform (HASP)

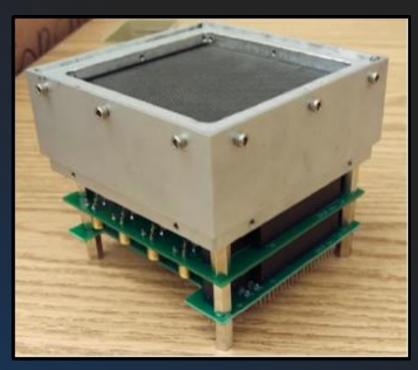


Figure 6: Image of GRID Detector

The EXACT Satellite: Sun-Pointing

- Solar Panels
 - Power generation
 - Attitudedetermination

- Magnetorquers
 - Attitude control

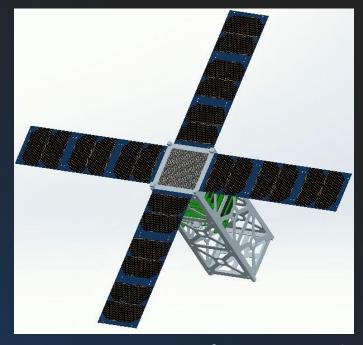


Figure 7: Image of EXACT with Solar Panels

EXACT Research and Testing

- Solar Flare Analysis
 - Predicted photon counts
 for each flare class
 - Used to predict data volume for detector

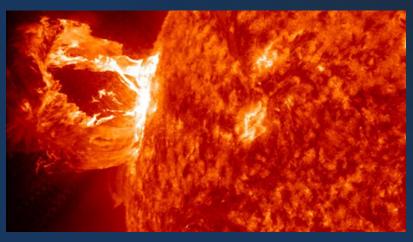


Figure 9: Image of Solar Flare (NASA)

Flare Class	Counts
B1	230,000
B5	935,000
B9	1,853,000
C1	3,370,000
C5	32,000,000
C9	58,000,000

Table 1: Solar flare counts by class

EXACT Research and Testing

- GRID Tests and Calibration
 - Testing with various radioactive sources

Discovered errors in current setup

Figure 10: Sample radioactive sources (imagesco.com)

EXACT Research and Testing

High Altitude Student Platform (HASP):

- Component Testbed
 - Detector
 - Communications
 - Power system
- Integration- August
- Flight- September

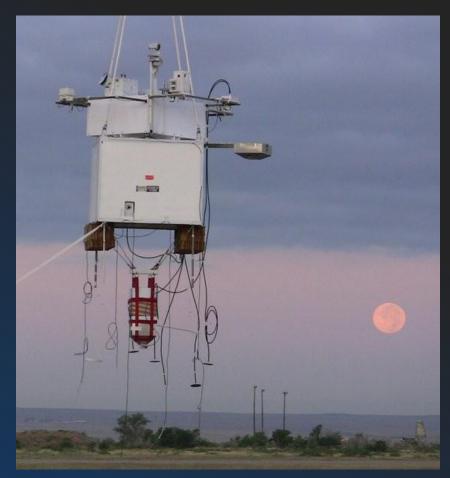


Figure 11: HASP Vehicle (stratocat.com.ar)

The Future and EXACT

 Inexpensive Hard X-Ray detector for solar observation Spacecraft ranging technique for positioning data in space

