A Segmented, Deployable, Primary Mirror for Earth Observation from a Cubesat Platform

Noah Schwarz, David Pearson, Stephen Todd, Andy Vick, David Lunney, Donald MacLeod – United Kingdom Astronomy Technology Centre

A Segmented, Deployable, Primary Mirror for Earth Observation from a Cubesat Platform

- Who we are
- Why deployable optics for Nanosats
- How
 - To sense
 - To deploy and align
 - To test
- Current conclusions and next steps

Work funded by UKSA and DSTL

UK Astronomy Technology Centre (STFC)

Why deployable optics for Nanosats 2.1m resolution 0.7m resolution

10cm aperture at 350km

Solution: deployable optics

The spatial resolution is limited by the aperture

 $R(radians) = 1.22 \frac{\lambda}{D}$

So a bigger aperture provides a finer spatial resolution image, and it increases the light gathering power ∞D^2

Issues and limitations

- To achieve the resolution you need to align the mirrors to $\lambda/10$, = 50nm in the visible.
- To turn this resolution into a ground sample you need to take account of ground speed
 Sub mS exposure times
- The reference image is an extended source, as opposed to a point source.....
- Plus all the usual limits (power, space, ...)

Sensing optical aberrations

Simulating metric response

Simulation strategy

- OpticStudio (Zemax)
 - Generates diffractive PSF
- Matlab
 - PSF convolved with scene (Assumes spatially invariant PSF)
 - Calculates image sharpness metrics

So many metrics

- What is a good metric to use?
 - Square intensity
 - Standard deviation
 - Edge detection filter: Sobel
 - Haar wavelet
 - Frequency method
 - ...
- Monotonicity better in practice than we suspected
- Sensitivity and scene independence are the key issues.

Bread-boarding the system

A high-precision deployment and adjustment strategy that can operate in space environments is required

The movement is created using high force piezo motors and guide flexures

Mechanical requirements		Adjustment resolution	Adjustment stroke	Deployment repeatability
DOF	Tip	$\pm \lambda / 14 (\pm 45 \text{ nm})$	1 mm	± 10 μm
	Tilt	± λ/14 (± 45 nm)	1 mm	± 10 μm
	Piston	$\pm \lambda/14 (\pm 45 \text{ nm})$	1 mm	± 10 μm

- Three motors on each mirror are required to provide tip/tilt/piston performance
- Mirror is suspended by a hinge on machined parallel flexures
- Piezo motors push the three flexible mounting points with a resolution of 30 nm

Mechanism performance

Testing the optics

- Phase-shifting Interferometer
- Scene based demonstration
 - Off-axis collimator
 - Fixed conjugate optics
 - On-axis collimator
- Dynamic scene demonstration
 - Digital light processor
 - Spectral testing

Current conclusions and next steps

- Fitting deployable optical systems in a Cubesat is feasible.
- Alignment of optics using EO ground targets works, but is tricky;

- Problems with feature dependence; SNR

- Next steps;
 - End to end breadboard
 - Minimize hysteresis effects: Displacement sensors
 - Static and dynamic scene tests either fixed conjugate optical system or on-axis collimator.
- Once the method is established there are lot's of potential implementations.

Thanks for listening

ARRANGE INCOMPANY

Andy Vick, UK ATC (STFC) </br><Andy.Vick@stfc.ac.uk>

