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Introduction – Adaptive Optics
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 Adaptive optics correct optical 
distortions
 Deformable mirror: actuators 

change the shape of the mirror 
surface to match the incoming 
wavefront

 MEMS deformable mirrors 

 Electrostatic actuators – no 
hysteresis

 Smaller size, weight, power, and 
cost for same number of 
actuators (compared to 
piezoelectric or electroceramic)

 Ideal for use in constrained 
environment (e.g. space 
telescope), but have not been 
space-qualified



Adaptive Optics Applications in Space

 High-contrast imaging

 Counteract jitter, 
thermal gradients, 
mechanical 
misalignment, surface 
roughness

 <1 Hz timescale

 More actuators allows 
for higher spatial 
frequency correction

 Nanosatellites: validate 
technology (MEMS DM) 
for implementation on 
future space telescopes

8/7/20164

Coronagraph Image Plane 
Higher spatial frequency (more actuators) = farther from 

image center
Traub, Oppenheimer 2010
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Adaptive Optics Applications in Space

 Atmospheric sensing 

with intersatellite

optical occultation

 Correct for scintillation 

and distortions to 

sound lower into the 

atmosphere

 > 1 kHz timescale

 Nanosatellites: 

technology validation 

and measurement 

platform 

8/7/20165

Atmospheric turbulence worse near the surface (left); more actuators 
allow for better-matched correction (right)

SSC16-WK-13

Neutral 
Atmosphere

Strong turbulence
(correction needed)

Direction of 
better 

correction
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CubeSat Deformable Mirror Demonstration 
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 DeMi Mission Goals:
 Characterize and calibrate the 

performance of a MEMS 
deformable mirror over a long-
duration on-orbit mission
 Measure mirror surface to <100 nm 

 Demonstrate the use of these 
mirrors as intended for high 
contrast imaging 
 Correct in situ aberrations to < 100 

nm rms 

 Baseline orbit: ISS (~404x424 km)

 Target stars: Vega, Arcturis, Sirius, 
Canopis, Alpha Centauri
 5-8 minute orbit-averaged access 

opportunities 

Notional rendering of 6U demonstration CubeSat
Image Credit: Aurora Flight Sciences

Subsystem Requirement

Attitude knowledge 0.1 degrees

Attitude stability <20 arcsec over 1 ms

Power < 10 W

Datarate 50 kbps

Volume
2U for optics
0.5 – 1U for driver

Mass < 1.5 kg

Payload Requirements and Specs



DeMi Payload Design
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 2U Optical payload

 Mirror: BMC Multi (140 actuators)

 Alternate: Kilo (952 actuators) with custom driver developed by 

NASA Ames

Mirror Characterization 
Payload Layout

Green: External source
Blue: Internal source

Marinan 2016

 2 sources: aperture + laser

 2 detectors: focal plane, wavefront 

sensor

BMC Mini/Multi 
Mirror Form 

Factor
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0 – Internal source + wavefront sensor

 Open-loop mirror characterization, closed-loop correction

 Experiment run periodically throughout mission life

SSC16-WK-13

DeMi Experiment Architectures

Beampath in red
A. Marinan, MIT
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1 – Internal source + focal plane image

 Closed-loop correction with focal plane sensor

 Experiment run periodically throughout mission life

SSC16-WK-13

DeMi Experiment Architectures

Beampath in red
A. Marinan, MIT
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2 – External object + focal plane image

 Closed-loop image correction with focal plane sensor

 Experiment of opportunity (bright star in view)

SSC16-WK-13

DeMi Experiment Architectures

Beampath in red
A. Marinan, MIT
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CubeSat Payload – In-lab Validation
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 To-scale optical payload
 Some modifications for mirror, 

detector packaging

 Mini deformable mirror (32 

actuators)

 Wavefront reconstruction and 

control software, drivers 

written in MATLAB on 

desktop computer
 Non-flight configuration

 Overall goal for setup: 
 Verify wavefront sensor 

measurement precision -> inform 

performance of payload in LEO

 Demonstrate closed-loop control

Laboratory hardware setup with key system elements
Marinan, 2016



Open-Loop Laboratory Validation
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 Payload wavefront sensor (left) showing behavior consistent with 
Zygo interferometer measurements (right)
 Shack Hartmann wavefront sensor, 4 lenslets (samples) per actuator

 ~80 nm deflection at 20% stroke

 Noisier than Zygo measurements (less controlled environment, noise in 
wavefront sensor measurement)

32 phase maps of influence function for each actuator poke 
(left) computed with wavefront sensor, (right) from Zygo interferometer 

Note: each subplot shows entire mirror surface 

Marinan, 2016
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Closed-Loop Laboratory Validation
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 Control law implemented
 Wavefront sensor sending 

feedback to deformable 
mirror

 Image correction 
(aberration with plastic 
plate) observed in focal 
plane

 Mirror responding as 
expected, no observed 
system instabilities

 Slow static correction
 2-3 second iterations, 

converges after ~35 
seconds

 Limited in correction 
capability (6 actuators 
across – limited spatial 
frequency)

(Left) Initial focal plane image 
(Middle) Focal plane image with aberration
(Right) Focal plane image after correction

Marinan, 2016

Marinan, 2016



Flight Mission – Status and Path Forward
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 Selected by DARPA for 6U flight 
demonstration (pending contract 
negotiations)
 Collaboration between MIT and Aurora Flight 

Sciences

 Scale payload design for 140 or 952-
actuator mirror
 Advantages: higher spatial frequency 

correction authority (coma, spherical, higher-
order modes)

 Exploring alternate wavefront sensing 
algorithms or wavefront/metrology sensors
 On-orbit updates could enable testing of 

multiple algorithms

 Flight design and build of supporting 
optomechanics (look into 3D printing)

Star-pointing DeMi mission concept illustration
Marinan, 2016



Summary
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 Adaptive (active) optics useful for space applications

 High contrast imaging

 Atmospheric sensing and characterization

 MEMS deformable mirrors offer promising solution for 
space-based platforms

 Low SWaP, high actuator density (high spatial frequency control)

 Have not been space-qualified 

 DeMi: CubeSat Deformable Mirror Demonstration

 Long-term on orbit characterization of MEMS deformable mirror

 6U CubeSat with ~2U optical payload

 Payload prototyped in laboratory at MIT

 Flight mission currently being negotiated



Thank you!
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This research was sponsored by a NASA Space Technology 
Research Grant (NNX12AM30H)
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Introduction – Nanosatellite Science Applications
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 Nanosatellites (CubeSats) for 
Atmospheric Sounding and 
Characterization

 Science platform

 Technology development platform

 Advantages: low cost, high risk 
tolerance, fast development, 
distributed system architecture

 Challenges: tight constraints in volume, 
mass, power, pointing, data downlink

 Want to develop methods to improve 
atmospheric sensing using 
nanosatellites in both science and 
technology development applications

TROPICS Nanosatellite weather sensing 
constellation

Image credit: MIT LL



Atmospheric Spectroscopy - Occultations 
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 Transit/Occultations

www.astronomy.ohiostate.edu



Occultation Concept

• Titan occults a double star
– Movie courtesy A. Bouchez

• Palomar 241-actuator adaptive optics 
system on the 5-m Hale telescope

• PHARO near-IR camera, K’ filter (1.95 –
2.30 μm)

24 8/7/2016SSC16-WK-13

• Example laser occultation mission  
architecture 
– Movie courtesy A. Marinan

• Transmitting satellite in sun 
synchronous orbit, receiving satellite 
in ISS-deployed orbit
– 2.26 mrad beamwidth

• Animation done with AGI STK 
software



Atmospheric Spectroscopy - Direct Imaging
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ESO/L. Calçada

Figure from Traub, Oppenheimer 2010



MEMS Deformable Mirrors
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 Actuators change the shape of the 
mirror surface to match the incoming 
wavefront

 MEMS devices

 Electrostatic actuators

 Stroke of ≈ 1 – 5 µm

 High voltage, low current

 More actuators

 Less expensive

 Fast response time

 Goal: use a CubeSat as a platform to 
demonstrate technology in space
 Enable future earth and exoplanet 

characterization missions

Stewart et al. 2007



 Challenge:

 Atmospheric turbulence induces its own aberration and attenuation

 Messy point spread function - difficult to detect and centroid

 Solution: use wavefront control to improve signal measurements

 Use nanosatellites for technology demonstrations of critical hardware (deformable mirrors) 

Occultation with Lasers
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 Intersatellite LEO IR laser link

 Range of wavelengths from 2 – 2.5 um (other options 
possible)

 Transmitted signal is attenuated by 
atmosphere 

 Attenuation at different bands -> differential 
transmission -> thermodynamic variables 
composition information

 Transmitted signal also bent by atmosphere

 Measure bending angle based on position of beam on 
detector (also requires knowledge of spacecraft 
position and altitude)

Marinan 2016



MEMS Deformable Mirrors in Space
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 High spatial-frequency correction requires 
high actuator-density deformable mirrors
 High Contrast Imaging: speckle nulling
 Laser Communications and Intersatellite 

Links: atmospheric distortion

 Space Qualification – current/past efforts
 MEMS Telescope for Extreme Lighting: 

Demonstration of MEMS mirror array on ISS
 PICTURE and PICTURE-2: sounding rocket –

observe exozodiacal dust
 PICTURE-3: Balloon launch

 NASA Ames ACE Lab – kilo MEMS deformable 
mirror in thermal vacuum testing

 Technology Development for Exoplanet 
Missions: Boston Micromachines and Iris AO
 T-Vac and vibration testing

 Mirrors evaluated in coronagraph testbeds 
through Princeton and JPL

 Qualify to survive launch environment (TRL ~6)
Mendillo, et al - PICTURE

Image credit: L. Poyneer



DeMi – Experiments
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 Baseline orbit: ISS (~404x424 km)

 Target stars: Vega, Arcturis, Sirius, Canopis, Alpha Centauri

 5-8 minute orbit-averaged access opportunities 

Experiment Source Sensor Purpose
Operational

Considerations

0
Internal 

Laser

Wavefront 

Sensor

Open and closed-loop 

mirror characterization

No payload-driven 

pointing requirements

1
Internal 

Laser
Focal Plane

Closed-loop wavefront 

sensing and correction 

demonstration

No payload-driven 

pointing requirements

2
External 

Object
Focal Plane

Closed-loop imaging, 

wavefront sensing and 

correction 

demonstration

Payload must track star 

and maintain stability 

over image exposure



0. Internal Source, S-H
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Experiment Description Observables
Observable 

Performance
Success Criteria 

Individual 

actuator pokes

Command each of 32 

actuators in order to:

- 33% stroke

- 67% stroke

- 100% stroke

- X-Y

displacement 

(in pixels) of 

spot after 

actuation

- Image of spots 

before and 

after actuation

- Maximum

expected spot 

displacement:  

1.5 µm stroke

- Minimum 

detectable 

spot 

displacement

correspondin

g to 50 nm 

actuator 

motion

- Measured 

mirror 

deflection is 

within 100 nm 

rms of 

commanded 

deflection

- Mirror meets 

success 

criteria for 

95% of all 

tests

Individual 

actuator pulls

Command all 32 actuators to 

100% deflection. Command 

each of 32 actuators in order 

to:

- 67% stroke

- 33% stroke

- 0% stroke

Zernike surface 

maps

Command actuators to the 

following Zernike modes at 

50% and 100%:

- Tip 

- Tilt

- Defocus

- Astigmatism



1. Correct Image of Star (closed loop)
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Experiment Description Observables
Observable 

Performance
Success Criteria 

Correct static 

imperfections in 

optical system

(Source: 

internal laser)

- Image focal 

plane and 

wavefront 

sensor with 

mirror

unactuated

- Apply closed-

loop correction 

with wavefront 

sensor in the 

loop

- Image focal 

plane and 

wavefront 

sensor with 

optimal mirror

deflection

- Strehl before and 

after correction

- Optimal 

commanded mirror 

voltage array for 

each parameter

- Focal plane image 

before and after 

correction

- Mirror 

actuations of 

λ/100 rms 

detectable on 

focal plane

- Strehl or 

encircled 

energy 

improves with 

each iteration

- Resulting 

Strehl >85% 

- Converge to 

correction 

within 8 

minutes (TBR 

based on 

access times)

- Actuators stay 

within 10%-

90% stroke 

range



1. Correct Image of Star (closed loop)
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Experiment Description Observables
Observable 

Performance
Success Criteria

Correct static 

imperfections in 

optical system

(Source:

external object)

- Image focal 

plane with 

mirror

unactuated

- Apply closed-

loop correction 

with wavefront

sensor in the 

loop

- Image focal 

plane with 

optimal mirror

deflection

- Focal plane image 

at beginning and 

end of observation

- Strehl during 

observation

- Mirror 

actuations of 

λ/100 rms 

detectable on 

focal plane

- Strehl or 

encircled 

energy 

improves with 

each iteration

- Resulting 

Strehl >80% 

- Converge to 

correction 

within 8 

minutes (based 

on access 

times)

- Actuators stay 

within 10%-

90% stroke 

range



TRL 6 vs 7

8/7/2016SSC16-WK-1333

 TRL 6:

 System or subsystem model or prototype demonstrated in a 
relevant environment

 A near final version of the technology in which additional 
design changes are likely is tested in real-life conditions.

 TRL 7

 System prototype demonstrated in a relevant environment

 The final prototype of the technology that is as close to the 
operational version as possible at this stage is tested in real-life 
conditions.

Backup



Wavefront Reconstruction
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 Measure wavefront to 
determine shape of 
mirror

 Sensored – optical 
element introduced into 
beampath to generate 
measurement

 Sensorless – intensity-
based measurements, 
computationally 
intensive

Backup



Shack Hartmann Design
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Parameter Threshold Units

Design wavelength 635 nm

Mirror Stroke 1.5 μm

Mirror Pitch 300 μm

Desired spot sampling 2.0 pixels/(λ/D)

Desired min detectable wavefront error 5.0 nm

Desired max detectable wavefront error 3.0 μm

Pixel pitch 5.2 μm

Lenslet pitch 300 μm

Lenslet focal length 4.8 mm

Actual max detectable wavefront error 8.8 μm

Centroid placement error for min 
detectable wavefront error

0.02 pixels

 Driven by desired mirror stroke measurement and 
resolution



Focal Plane Sensor Design
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Focal Plane Sensor Design
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Parameter Threshold Units

Aperture Diameter 0.0254 m

Telescope Effective Focal Length 0.4 m

Design wavelength 400-700 nm

System resolution (1.22 L/D) 5.4 arcsec

Telescope Field of View (width) 1.0 x 0.8 degrees

System throughput 47 %

Detector readout noise 5 photons/pixel

Detector dark noise 60 electrons/s

Detector quantum efficiency  55 %

Desired SNR at detector 10.0 --

Photoelectrons flux per pixel from star 5e6 photons/pixel/s

Required minimum exposure time 0.001 seconds

 Driven by desire to image a star



AO CubeSat Payload – Software 
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Wavefront Reconstruction Validation
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 Reconstruction based on 
Southwell method

 Average slopes from four 
surrounding lenslets (up, 
down, left, right)

 “Truth” Data

 Zygo Interferometer (JPL)

 Measurements at 20% 
stroke actuation

Southwell, 1980

Zygo Interferometer Setup



Closed Loop Correction Validation
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 Wavefront measurement converted from spot 
motion to “mirror space”

 Interaction matrix – saved measurements of 
individual mirror pokes at maximum stroke

 Assume linear scaling with actuator height

 No open-loop reconstruction done within control 
algorithm

 Basic pseudo-inverse reconstructor

 Piston subtraction and scaling: ensure that 
command to mirror is within mirror control 
authority

 For more complex applications, can remove  
tip/tilt, create weighted matrix based on 
subaperture lighting, covariance matrix based on 
expected atmospheric variability

Y = Ax

𝛼1𝑥1 ⋯ 𝛼𝑚𝑥1
⋮ ⋱ ⋮

𝛼1𝑦𝑛 ⋯ 𝛼𝑚𝑦𝑛

𝛼 = actuator
X = spot displacement in x
Y = spot displacement in y
M = number of actuators
N = number of 
subapertures

Vector of 
actuator motion

Observed spot 
motion (x and y)


