Ka-band Technologies for Small Spacecraft Communications via Relays and Direct Data Downlink

SPACE COMMUNICATIONS AND NAVIGATION

CubeSat Workshop – 30th Annual AIAA/USU Conference on Small Satellites NASA Glenn Research Center, Cleveland Ohio/James M. Budinger Session VII Communications 07 August 2016

www.nasa.gov

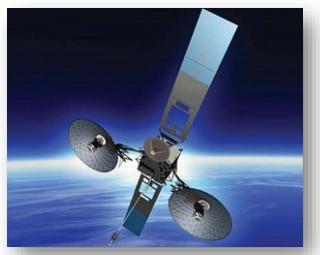
- Objectives
- Ka-band background
- Software defined radios
- Ka-band antennas
- Potential data return in Ka-band
- Summary

Ka-band Communications

OBJECTIVES

- Develop affordable technologies to ease transition into Ka-band for significantly higher data rates with minimal impact on near Earth missions
 - Ka-band/multi-band software defined radios (SDRs) and standards for a range of space missions
 - *Portable waveforms* for SDRs to reduce cost of development and increase flexibility
 - *Electronically steered high gain antennas* to increase data return and eliminate mechanisms and vibration
 - Leverage *large and small business and university* capabilities to address unique needs of small spacecraft

NASA Ka-band Communications Infrastructure


KA-BAND BACKGROUND

TDRS Ka-band Single Access Service

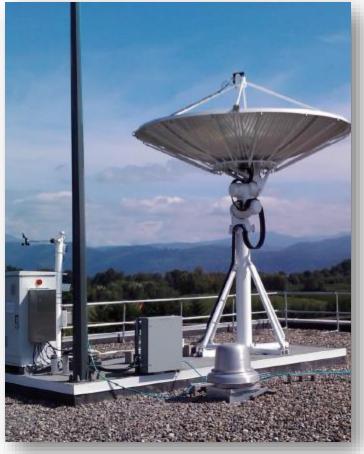
- NASA's Tracking and Data Relay Satellite (TDRS)
 - Three generations of spacecraft provide high bandwidth, low latency communications to multiple simultaneous mission spacecraft
 - S-band, Ku-band, and Ka-band Single
 Access (KaSA) and S-band Multiple Access services
- KaSA Service via large steerable antennas in auto-track mode
 - *Return* (from spacecraft) of mission data and spacecraft telemetry; *G/T: 26.5 dB/K*; 25.25-27.5 GHz
 - Forward (toward) command and control EIRP: 63.0 dBW; 22.55-23.55 GHz
 - Field of View <u>+</u> 76.8° E-W; <u>+</u> 30.5° N-S

Third Generation TDRS K, L, M

NASA Near Earth Network (NEN) Ka-band Tracking Terminal Examples

WS-1 at White Sands New Mexico

AS-3 and AS-1 at Fairbanks Alaska


- WS-1
 - White Sand Complex
 - 18 m
 - S-, X- and Ka-bands
 - Ka-band G/T of 46 dB/k

- AS-3
 - Alaska Satellite Facility
 - 11 m
 - S- and X-bands operational
 - Provisions for Ka-band capability in ~2020
 - Expected Ka-band G/T of 40 dB/k

Commercial Ka-band Tracking Terminal Example

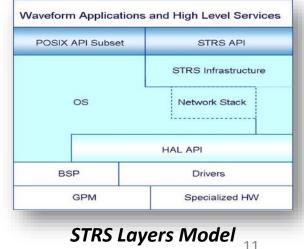
Type 2 Ground Mount on Roof

- Comtech TCS 2.4m X/Y Tracking Terminal
 - Eliminates "keyhole" when spacecraft is overhead
- Ka-band operation
 - 25.5 to 27.0 GHz
 - G/T of **27 dB/K**

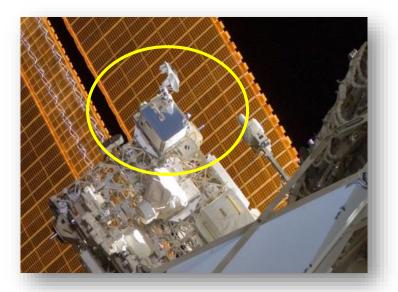
Source: http://www.telecomsys.com/Libraries/Collateral_Documents/XY_Overview_Brochure.sflb.ashx

NASA Near-Earth Mission Frequency Spectrum and Typical Channel Bandwidths

Mission Links	Via TDRS Relays (GHz)				
Space-Space	Forward	Bandwidth	Return	Bandwidth	
• S-band	2.025-2.110	0.028	2.200-2.290	0.018	
• Ku-band	13.775 <u>+</u> .070	0.065	15.0034+.1125	0.250	
• Ka-band	22.55-23.55	0.065	25.25-27.50	0.250, >0.650	
Mission Links	Via NEN Direct to Ground Links (GHz)			GHz)	
Space-Earth	Uplink/ Command	Bandwidth	Downlink/ Telemetry	Bandwidth	
• S-band	2.025-2.110	0.085	2.200-2.290	0.090	
 X-band Earth Science 	N/A	N/A	8.025-8.400	0.375	
 X-band Space Science 	7.190-7.235	0.045 Overlap	8.450-8.500 Up to 4:	0.050	
• Ka-band	N/A	N/A	25.50-27.0	0.500 to 1.500	


STRS and Ka-band SDRs

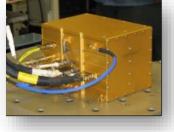
SOFTWARE DEFINED RADIOS


- Space Telecommunications Radio System (STRS) Architecture and Standard (<u>NASA-STD-4009</u>)
 - Enables independence of applications from software defined radio platform/hardware
 - Reduces effort to develop, port and share applications waveforms and documentation via repository
 - Applicable to all categories of spacecraft from large platforms to SmallSats and CubeSats
 - Multiple vendors have STRS compliant
 SDRs or platforms in their product line
 - Others under development via partners and NASA SBIR/STTR Program
 - See <u>https://strs.grc.nasa.gov/</u>

SCaN Testbed on ISSs is Flying Multiple STRS-Compliant SDRs from 3 Vendors

JPL/L-3 CE

- S-band SDR; 6 MHz channel
- 10 Mbps Class
- L-band receive (GPS)
- Virtex II, Sparc Processor, RTEMs

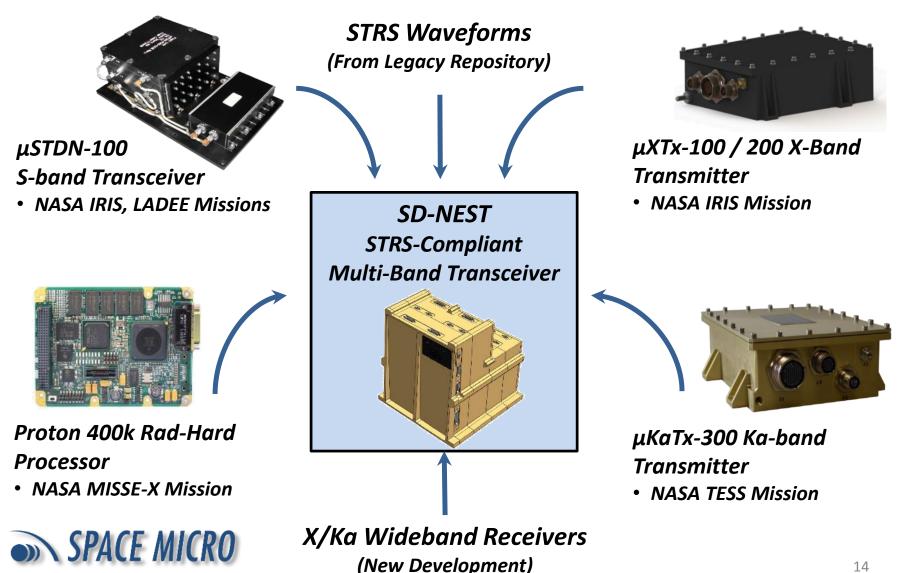

<u>Harris</u>

- Ka-band SDR; 225 MHz
- >500 Mbps Class
- Virtex IV, PowerPC Proc, DSP (1 GFLOP), VxWorks
- STRS adopted for use in <u>Harris AppSTAR™</u> software-defined payload architecture

General Dynamics

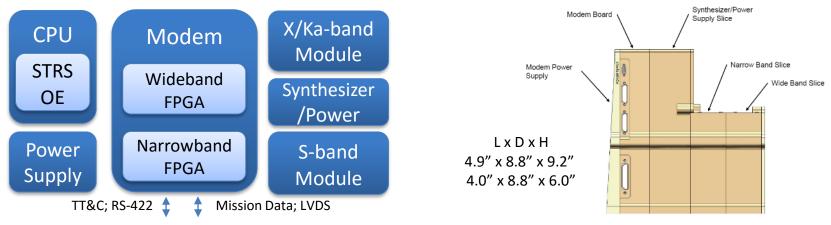
- S-band SDR; 6 MHz channel
- 10 Mbps Class
- Virtex II, ColdFire Processor
 (60 MIPS), VxWorks, CRAM
 (Chalcogenide RAM) Memory

 ✓ SDRs offer economies-of-scale via common hardware, tailored to mission needs via STRS-compliant software


- SBIR-14 Commercialization Readiness Program
 - Software Defined Near Earth Space Transceiver (SD-NEST) [Space Micro]
- STTR-15 Phase I
 - Wideband Autonomous Cognitive Radios for Networked Satellite Systems [Bluecom Systems/U. of New Mexico]
- SBIR-16 Phase I Selections
 - OpenSWIFT-SDR for STRS [Tethers Unlimited]
 - Plug-In Architecture for Software-Defined Radios [Blue Sun]
- [Earlier SBIR SDR Contracts non-STRS Compliant]
 - <u>https://www.nasa.gov/sites/default/files/files/SBIR_SDR.pdf</u>

✓ Watch for the 2017 SBIR/STTR call for proposals in November 2016

Software-Defined Near Earth Space Transceiver (SD-NEST)


Software-Defined Near Earth Space Transceiver (SD-NEST)

SCAN

- Frequency agile, multi-band transceiver
 - Narrowband TT&C over any frequency S-, X- or Ka-bands
 - Wideband data return and forward over X-band (375 MHz) or Ka-band (>650 MHz)
- Flexible waveform processing
 - Low-power mode for TT&C alone
 - High-performance mode for high-rate mission data return (>1.2 Gbps)

• STRS Operating Environment

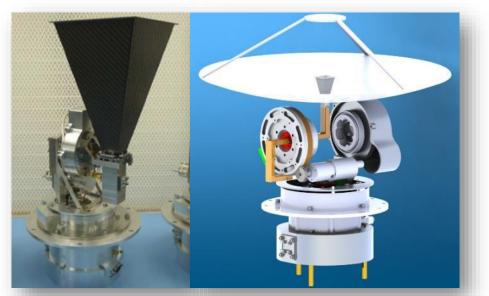
- General-purpose processor available (e.g. P400K) for high-level control algorithms

✓ Engineering Model Completion in FY17

✓ Seeking partners for contract option (with cost sharing) for proto-flight model

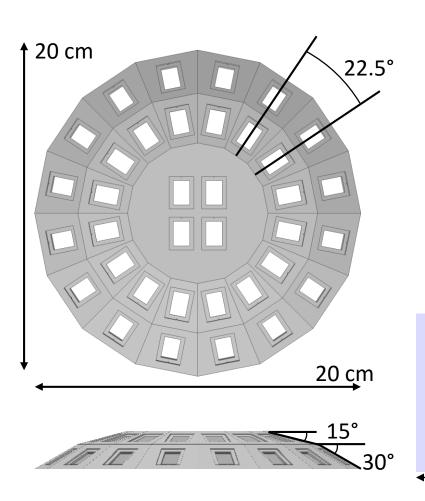
Alternatives to Mechanically Deployed or Steered Antennas

KA-BAND ANTENNAS

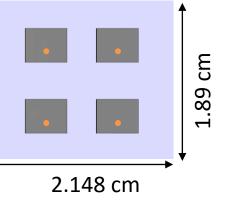


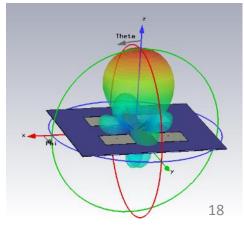
Mechanically Steered High Gain Antenna Examples

SCaN Testbed Ka-band and S-band Antenna Positioning System (APS)


Surrey Satellite X-band (COTS) and Ka-band (Under development) Antenna Pointing Mechanisms (APM)

	SCaN Testbed APS on ISS		SSTL X-APM	SSTL Ka-APM
Frequency	25.5 – 27.0 GHz	2.025-2.11 GHz	8.0 – 8.5 GHz	25.5 – 27.0 GHz
Gain	39.8 dBi	13 dBi	18 dBi	30 dBi
Antenna diameter	~46 cm	~25 cm		~30 cm
Overall Dimensions	57 cm x 30 cm x 71 cm		Ø 27.4 x 30 cm	TBD


GRC 3-D Printed Ka-band Faceted Dome Array – Concept and Prototype



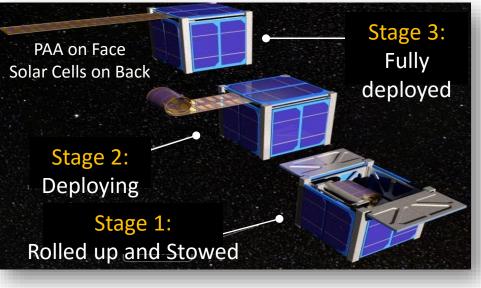
- 36 Elements (16 at 30°, 16 at 15°, 4 at 0°)
- ~90 degree field of regard (~30° beamwidth)
- Probe Fed Elements 14.4 dBi, 256 MHz BW

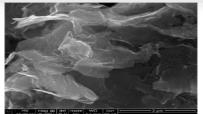
SBIR/STTR SmallSat Antenna Technologies Examples

- STTR-14 Phase II
 - Fully Printed Flexible 4x4 Element Graphene–Based Phased Array Antenna; [Omega Optics/U. Texas Austin]
- STTR-16 Phase I Selection
 - Deployable Ka-band Reflect Array Antenna; [Tyvak Nano-Satellite Systems/UCLA]
- SBIR-16 Phase I Selection
 - Space Environment Design and Testing; [Kymeta Government Solutions, Seattle, WA]

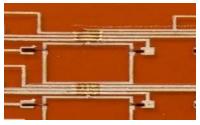
✓ Watch for the 2017 SBIR/STTR call for proposals in November 2016

Graphene Based, Flexible, Fully-Printed 2D-Scanning Phased Array – Omega Optics and Texas State University

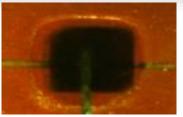


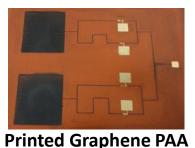

• Goal

Develop a flexible ink-jet printed
 Graphene-based 4-bit 4x4 phased array
 antenna (PAA) at S-band


Development Approach

- Grow Graphene nano-flakes via CVD and incorporate into Graphene ink
- Print multi-layer integrated circuits and interconnections on flexible substrates
- Print Rx/Rx modules from Graphene transistors, phase shifters and amplifiers
- Test a prototype printed PAA
- Applications
 - CubeSat and SmallSat antennas
 - Large deployable phased array antennas
 - Reconfigurable, deployable, conformal, and/or wearable active antennas




Graphene flakes

Multilayer interconnect

Inkjet printed transistor

20

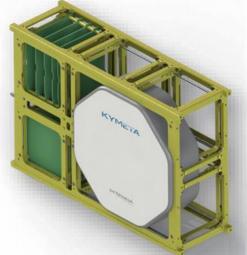
Kymeta Government Solutions, Inc. (KGS) Meta-material Phased Array

KYMETA

CubeSat Antenna

- Frequency: Optimized for 27.0 GHz
- Gain: ~24 dBiC over scan volume
- Electronically steerable; <u>+</u> 45° range
- Power: <5W

Maturity

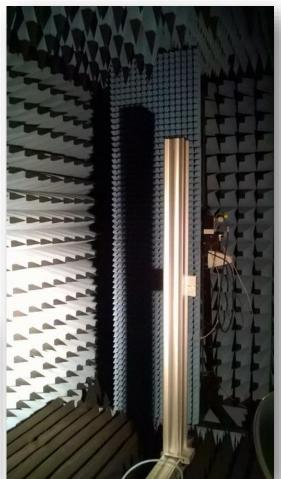

- Designed, built, tested, delivered
- Next steps: Modifications for space (SBIR Phase I), flight qualification testing and demonstration mission

SmallSat Antenna

- Simultaneous transmit and receive out of same aperture for X, Ku, and Ka bands
- Capability at Q, V and W bands
- Technology creates potential for economical 6U, 12U, and larger form factors

Maturity

- Initial design target sets identified
- Early modeling and simulation complete
- Seeking a development partner to fund detailed design, build, and test


Current NASA Activities with Kymeta Meta-material Phased Array

KGS SBIR Phase I (GSFC)

- Seeks to space qualify CubeSat antenna
 - Define requirements
 - Hardware redesign
 - Antenna redesign
 - Thermal characterization
- All of which seek to make the SmallSat antenna space flightqualifiable

Cubesat Antenna Measurements (GRC)

- Seeks to characterize the metamaterial-based technology beyond its design parameters gain insight into what it can do
 - Leverage antenna measurement systems and talent at GRC to obtain high quality pattern, polarization, power, and steering measurements.
 - Compare against other Kaband antenna technologies for potential for use on CubeSat and SmallSat missions.

Boeing 256-Element Ka-Band Transmit Phased Array Antenna for GRC and ONR



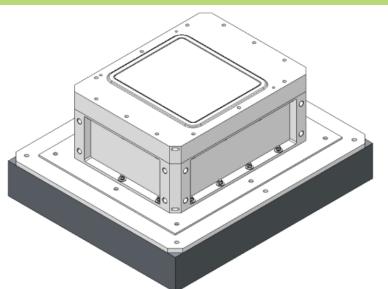
Array Number of Elements: 256 Elements Band: 25.5-27.5 GHz; > 1 GHz Bandwidth Beam width: Nominal 5 degrees at -3dB Gain (CP): 28 dBi EIRP: Peak 36.5 dBW; 33 dBW@ 60 Degrees

Array Total DC Power: 90 Watts (per beam) Dimensions: 19 cm x 10.2 cm x 6.5 cm

Mass: 1.8 kg

Limitations:

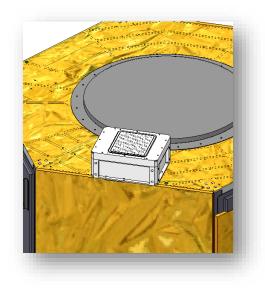
- Lab model over 10 year old design; many components obsolete
- Rad-hard Triquint GaAs MMIC design kit and foundry process retired
- "Brick" design is more expensive to manufacture than "tile" approach



Scalable Ka-band Active Phased Array Antenna (PAA) Design

- Space qualifiable tile PAA design
 - Based on Boeing Wideband Communication and RF Systems Group airborne product line
 - Tile packaging significantly reduces costs and offers higher efficiency than brick design
 - SiGe 0.15 um process; rad-hard by design MMICs to 300 krad (Si)
- Ka-band: 25.25 to 27.5 GHz
 - Right-or left-hand circular polarized
- Wide field of regard: <u>+</u> 70°
 - LEO mission to GEO relay or direct to ground
- Easily scalable implementation
 - Select 64, 128 or 256 elements for EIRP of 24-,
 30- or 36-dBW respectively
 - Range of user needs, budgets, SWaP constraints
- Potential for data rates up to 3.2 Gbps
 - Performance with DVB-S2 MODCOD to be validated

SmallSat Design Shown with Optional Enclosure for Beam Controller, Power Supply and Thermal Control


Prototype Tile PAA in Airborne Packaging

NASA

Boeing Ka-band Tile Array for SmallSats

- 25.5-27.0 GHz
- <u>+</u> 70 degree FOR
- 24-, 30- or 36 dBW
- 22.9 cm x 17.8 cm x 9.6 cm
- 1.8 kg
- <150 W depending on # elements and drive level
- Rad-hard by design
- 8 year design life

Ka-band PAA Shown on Boeing 502M SmallSat Bus

- ✓ 10s to 100s Mbps data rates in affordable, modular PAA packages optimized for SmallSat missions
- Available with integrated beam controller, power supply and thermal management

Comparisons Via GEO Relay and Direct to Ground (DTG)

POTENTIAL DATA RETURN IN KA-BAND

Potential Minimum Data Rates/Return Using Future Tile Phased Array Antenna

Data Return via	Bandwidth	Future Boeing Ka-band Tile Phased Array Antenna		
		64 Element	128 Element	256 Element
TDRS, 26.5 dB/K	225 MHz	900 kbps	3.5 Mbps	14 Mbps
WS-1 Terminal 18.3m, 46 dB/K	500 MHz	830 Mbps	1.1 Gbps	1.1 Gbps
	1.5 GHz	1.5 Gbps	2.9 Gbps	3.3 Gbps
AS-3 Terminal 11m, 40 dB/K	500 MHz	520 Mbps	990 Mbps	1.1 Mbps
	1.5 GHz	940 Mbps	1.9 Gbps	3.1 Gbps
Comtech TCS 2.4m, 27 dB/K	500 MHz	64 Mbps	230 Mbps	500 Mbps
	1.5 GHz	64 Mbps	250 Mbps	820 Mbps

- 1000 km, 98.5° mission, max ranges 38000 km, 2800 km, DVB-S2 MODCOD
- SmallSat DTG data rate ~70x higher than via TDRS; ~38 Gb/ 10 minute pass
- Large mission DTG data rate ~235x higher than via TDRS; ~2Tb/10 minute pass

Summary and Co-Authors and Contributors

CLOSING COMMENTS

- Affordable Ka-band communications technologies will enable a new generation of science and exploration missions through increased data return
 - Mission data return rates from 10s of Mbps to Gbps are feasible for range of small and large satellites
- NASA is working with industry and SBIR/STTR program to:
 - Develop STRS-compliant waveforms
 - Advance the technology readiness level of Ka-band SDRs
 - Develop and demonstrate Ka-band space-qualifiable electronically steered antennas

- NASA Glenn Research Center, Cleveland OH
 - Charles Niederhaus, Richard Reinhart, Joe Downey, Anthony Roberts, Michael Zemba, James Nessel, Bryan Welch
- Space Micro, San Diego CA

Bert Vermeire

- Boeing Satellite Systems El Segundo, CA and Boeing Research & Technology, Seattle WA
 - Mario Pavlovic, Nathan Mintz, Tony Monk, Tuan Ha
- Kymeta Government Solutions, Seattle WA
 Tom Boyer
- Comtech TSC, Torrance CA
 - Jay Moody

For More Information

- Contact: James Budinger
 - 21000 Brookpark Road, Mail Stop 54-1
 - Cleveland OH 44135
 - james.m.budinger@nasa.gov
 - 216.433.3496

For your kind attention

THANK YOU!