....Big Performance, Smaller Satellites

SSC16-WK-43

Canadian Electric Propulsion Development: A Cylindrical Hall Thruster

Carl Pigeon (Presenter) Nathan Orr Benoit Larouche Robert E. Zee

Introduction

- Increased demand for small satellite missions incentivizes the development of advanced small satellite technology
- Propulsion System: Enable orbit raising, Station keeping & de-orbiting for more advanced missions
- Under the CSA's Space Technology Development Program (STDP) and SFL personal funding, SFL is developing the technology to suit Canada's future propulsion needs

JTIAS

The solution

Electric Propulsion

- High specific impulse, low thrust
- Uses electrical energy to accelerate plasma, not limited by energy of chemical reaction
- Traditional technology consumes power far exceeding capability of small satellite missions

Rendering provided by the University of Michigan. PEPL

- The focus is on low power propulsion system (Sub 200 W)
- SFL chose to develop a hall thruster due to its relative high thrust to power ratio

JTIAS

Hall Thruster

Annular Hall Thruster

Cylindrical Hall Thruster

Mark 1 Model

- Developed for research purposes under CSA funding
- Designed to be re-configurable —

- → 1. Electromagnets
 - 2. Variable ionization chamber length
 - 3. Adjustable propellant mass flow rate

Test Campaign

- Tested performance with Argon and Xenon
- Determined optimal configuration of parameters:
 - Magnetic Field
 - Ionization Chamber Depth
 - Cathode Position
- Measured thrust and Isp performance

Argon Propellant

Xenon Propellant

...Big Performance, Smaller Satellites

Startup

+ UTIAS

Thrust Comparison

- Performance requirements achieved as stated in contract (5-10 mN)
- 3% to 26% efficiency depending on propellant used and discharge power (typical for small CHT)

Specific Impulse Comparison

- Higher specific impulse can be achieved with flight qualified Cathode
- Cathode flow rate = 0.3 mg/s Argon & 0.2 mg/s Xenon

Specific Impulse: Xenon Propellant

Specific Impulse: Argon Propellant

Variable Power Operation

- Xenon operation with fixed 0.4mg/s propellant flow rate
- Stable operation from 15W to 250W

• Funded internally by SFL

- Electromagnets replaced with permanent magnets
- 70% Lighter than prototype
- Smaller (fits in standard 1U CubeSat volume)
- Designed for space environment
 - Passive thermal management
 - Launch loads
 - Gas & Electrical connections

Mark 2 Model

+ UTIAS

TVAC Acceptance

- Thruster was mounted on a radiator designed to dissipate 10 Watts when held at 60°C
- Test included:
 - Cold start at -20 °C
 - Steady state operation at 200 W
 - Cold soak (Thruster reached -70 °C)
- No cracks or degradation observed

Vibration Acceptance

- **Goal:** Validate thruster design which was built to be indifferent of launch vehicle type
- Worse case scenario of all common launch vehicle systems tested
- Each axis tested as follows:
 - Sinusoidal burst
 - Sinusoidal
 - Random
 - 50 G Shock
- Functional test performed after each run (visual inspection & continuity checks)

Low level Sine Sweep

- 50 16.3 9.6 **ರಾ** 🖗 0.5 Harmonic Spectrum Mount_Z Harmonic Spectrum Mount Y Harmonic Spectrum Mount X Harmonic Spectrum FHousing_Z Harmonic Spectrum FHousing_Y Harmonic Spectrum Control Harmonic Spectrum Chamber_Z Harmonic Spectrum Chamber_Y Harmonic Spectrum Chamber 10e-3 Decade 2000 5 Hz
- Lowest natural frequency observed at 553 Hz

Conclusion

- SFL's Mark 2 Cylindrical Hall Thruster successfully passed vibe and TVAC testing
- Further performance characterization and optimization being performed on new model
- Aging studies on Mark 2 model will be performed to quantity improvement over Mark 1 model

...Big Performance, Smaller Satellites

Sinusoidal Burst test

- Simulate quasi-static accelerations expected on the DNEPR launch vehicle
- 10.7 G's over frequency range of 9 Hz to 10 Hz at 0.5 Hz/sec

Sinusoidal test

Frequency (Hz)	Acceleration (g)	Displacement (mm, 0-peak)
5	1.74	17.4
8	4.5	17.4
100	4.5	0.099

Sweep Rate: 2 Oct/min

Random vibration

Frequency (Hz)	Acceleration (g)
20	0.026
50	0.16
800	0.16
2000	0.026
g _{rms}	14.1
Duration	120 seconds

Shock test

 40 g shocks have been experienced on PSLV. With added 25% margin, shock test was performed at 50 g, half-sine waveform for duration of 10ms