In-Orbit Demonstration of a MEMS-based Micropropulsion System for Cubesats

Kristoffer Palmer, Johan Sundqvist, Ana Zaldivar Salaverri, <u>Tor-Arne Grönland</u>, NanoSpace AB, Uppsala Science Park, SE-75183 Uppsala, Sweden

Zhao Li, Shufan Wu

Shanghai Engineering Centre for Microsatellite(SECM), Chinese Academy of Science Haike Road 99, Pudong District, 201203, Shanghai, P.R.China

www.sscspace.com/nanospace

Outline

- Introduction
- Propulsion for micro/nanosatellites
 - Propulsion module designs
 - Closed loop thrust control
- Flight data from TW-1 mission
- Next steps
- Concluding remark
- Swedish lesson?

MEMS – MicroElectroMechanical Systems

- MEMS enables small sizes
 - µm feature sizes
- MEMS enables batch fabrication
- MEMS enables on-chip integration
 - Nozzles, sensors, actuators...
 - "Small & smart components in large numbers"

NanoSpace Idea:

To provide products for the space market based on novel MEMS technology

NanoSpace Products

MEMS based Micropropulsion System

 Miniaturized propulsion system for precision control of satellites

Xenon Flow Control

• Miniaturized components for flow control in electric propulsion systems

Propellant Gauging System

 A propellant gauging system for telecommunication satellites

Individual sensors and actuators

- Flow control valves
- Isolation and safety valves
- Filters
- Sensors
- Terrestrial applications

Propulsion for micro-/nanosatellites

Propulsion Modules for Cubesats

- 3U cubesat propulsion module: in orbit since Sept 2015
- 6U cubesat propulsion module: first flight 2017
- Custom designs: Tank size, number and orientation of thrusters, etc

Complete system:

- Propellant tank and feed system including filters, isolation valves, sensors, heaters
- Thrusters with proportional control
- Control and interface electronics to the satellite platform

<u>3U Design – System Schematic</u>

The 3U CubeSat propulsion module

- Four 1mN thrusters with closed loop thrust control
- Thrust resolution: <10µN
- Propellant: Butane
- Total impulse: 40Ns
- Size: 10 x 10 x (3-5) cm
- Mass: 300/350 g (Dry/Wet)
- Operating pressure: 2-5 bar
- Power consumption: 2 W (average, operating)
- Electrical interface:
 - Power: 12V, 3.3V
 - Communication: CAN / I2C
- Mechanical interface:
 - Conforms to 4x M3 (position according to PC/104 spec.)

Closed-Loop Thrust Control

Figure: Schematic view of a complete closed loop control thruster. ON/OFF valve in conventional technology, the rest in MEMS.

Closed-Loop Thrust Control

– Unlike most other

Figure: Test result of a MEMS valve operating in closed loop control mode showing the thrust response to commanded steps of 5 μ N.

In Orbit Demonstration on TW-1

- TW-1 constellation (also named STU-2)
 - Two 2U + one 3U cubesats
 - Built by Shanghai Engineering Centre for Microsatellites (SECM)
 - Launched on September 25th 2015 with the new LM-11 to 480 km SSO
- Propulsion to be used for along track formation
 - Control relative distance between 1 and 1500 km
- Payloads
 - AIS, ADS-B, GPS/BD-2, ISL (S-band),
 - Camera
- Mission objectives
 - Ad-hoc intersatellite networking
 - Ship and polar ice monitoring
 - Payload and propulsion demonstration

Orbital data of TW-1 mission

Altitude of TW-1A

De-spinning the satellite

.. by "live" operation during passage

- TW-1 mission continues:
 - 10 months+ in orbit, plenty of propellant left
- Multiple flights coming up for the 3U propulsion module the coming years:
 - 2017 3U cubesat, University demo mission: "MIST"
 - 2017 3U cubesat precursor for "Internet of Things" constellation
 - 2018 ESTCube-2: 3U cubesat, precursor for interplanetary electric solar sail missions ESTCube-3 and thereafter ESTCube-n

2017 - First flight of the 6U propulsion

ESTCube-2

www.sscspace.com/nanospace

Upcoming 6U flight: GOMX-4B

- Our propulsion system is onboard on of the 6U cubesats in the tandem mission GOMX-4
- Propulsion needed to demonstrate formation deployment and control
- 6U design with heritage from flight demonstrated 3U design
 + "ESA style" verification process
- Project schedule:
 - PDR passed in May 2016
 - CDR in October 2016
 - Launch in Q3 2017

Next steps - 2

- 2020 AIM/PALS: Two 3U cubesats on Asteriod Impact Mission, 6DOF is key
- 2018 ESA qualification of a generic propulsion module for advanced cubesat missions (12 thrusters x 10mN, 500g, 375Ns, 6W)
- Thruster upscaling for larger cubesats and microsats
 - 10-50 mN butane thrusters
 - Distributed thruster architecture

-> All together we forsee ~100 cubesats with propulsion the coming 4-5 years

Propulsion is here

- also for the micro/nano satellites

Come see our SMÖRGÅSBORD ['smœrgos buːd] of miniaturized components in SSCs boot 26-27

Isolation valves, flow control devices,

filters, thrusters

Xenon flow control module

CubeSat propulsion module

Thank you for your attention!

