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A CubeSat—based mission designed to
make multipoint, GPS TEC and
scintillation observations of the
ionosphere on the ~1 km spatial scales
associated with communication and
navigation system degradation.

Radio scintillation leading to:
20 dB signal fade in GNSS (GPS), loss-of-lock,
dropped data packets, or total inoperability

[Basu and Groves, 2001; Ledvina et al., 2002; Seo et
al., 2011 Datta-Barua et al., 2003; Doherty et al., 2004]

When, where, and why can we expect to see

scintillation causing irregularities form?
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Space Segment:
2 x 1U CubeSats — same orbital track
(pearls-on-a-string)

Payload:

Novatel OEM V6 Dual-frequency GPS Rx GPS L1/L2 GPS L1/L2
Planar Patch Antenna #2  Planar Patch Antenna #1

Communication: UHF Tuned

. . Monopole Whip
UHF communication to ground

ADCS:
Coarse attitude determination and control?

Photodiodes

Orbit:
600 km altitude, 55 deg inclination

Lifetime:
6-mo minimum

Resolution:
Minimum 50% of observations < 5 km at 90 days
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GPS telemetry up to 50 Hz including:
Code and carrier phase
Carrier C/N,

This allows calculation of GPS TEC,
signal fade, and scintillation indices

Measurement Geometries
B Top Side

Bl side Scan

B Limb Occultation

Three look directions:
Top-side
Side-Scanning (or cross-track) GPS
Rearward Limb Occultation

Measurement resolution is SCION B
a function of spacecraft SCION A
separation and azimuth to

the the GPS satellites

Example:
p=Ssin¢ 6 km spacecraft separation corresponds to 1 km
____________ multipoint resolution ~30% of the time
A) (based on relative position to GPS satellites)
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* If there is no attitude control on the two spacecraft, they will randomly drift after deployment

* Since we can not predict at which rate they will drift, we ran hundreds of satellites with random initial angular
velocities. (Realistic values for the drift are a few degrees/s)

* The distributions on the pitch, roll, and yaw angular velocities are shown below
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* We then propagate the 500 hundred satellites and look at their relative positions as a function time
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* The spacecraft are distributed along the orbit 90 days after deployment as shown below
*  50% of the satellites are clustered in a 1.72 km bin size, 80% in a 5.88 km bin size
* In other words, there is a 80% chance that the 2 SCION satellites will be separated by less than 5.88 km after 90 days

Spacecraft distribution along the orbit 90 days after deployment
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Influence of the solar activity

* The previous slide was considering a strong solar activity (F10.7 = 200 and Ap = 80). This is a worst case scenario
* These figures show the same distributions as before but with quiet solar activity (F10.7 = 90 and Ap = 7) and moderate
solar activity (F10.7 = 120 and Ap = 15)
* After 90 days, there is a 80% probability that the satellites will be:
o 370 m apart from each other for quiet solar activity (left)
o 940 m apart from each other for moderate solar activity (right)
o 5.88 km apart from each other for strong solar activity (previous slide)
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Conclusion
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* This analysis shows that without attitude control, the distance between the two SCION
satellites will likely be smaller than 10 km, even with a strong solar activity.

* However, there are limits to this approach:
o There is a small chance that the satellites end up being outliers of the previous
distributions: in other words, end up being separated by higher distances (20-100 km)
o The SCION satellites’ rotation rate cannot be more than a few degrees/s to maintain GPS
tracking
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BACKUP SLIDES
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Outliers (backup slide) s o ot e

Spacecraft distribution along the orbit 90 days after deployment
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Influence of solar activity (backup slide)

Interval width (50% and 80%) of the statistical dispersion of the spacecraft along the orbit as a function time
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Target Spatial Scale [km]
0.5 1 2 3 5

10% S<10 km at F10.7 200 100

40" Inclination 7
0  RAAN offset -

99% S<10 km at F10.7 120 sol

99.9% S<10 km at F10.7 90

55 Inclination
0 RAAN offset

% Observation Resolution

60° Inclination
0 RAAN offset 1

Spacecraft Separation [km]
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Passive Separation Control
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o Ratio of Effective Areas With Differential Rotation Rates
Spinning the spacecraft 1.04 : 1 : ,

averages differences in their
drag profile
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