THE RANGING AND NANOSATELLITE GUIDANCE EXPERIMENT (RANGE)

Brian C. Gunter, Byron T. Davis, E. Glenn Lightsey, Robert D. Braun Daniel Guggenheim School of Aerospace Engineering

RANGE - MISSION OVERVIEW

- Two 1.5U satellite formation
- Selected for a launch opportunity through the Terra Bella (formerly Skybox) University Cubesat Partnership
 - Satellite delivery due in 2016
- Mission objectives
 - Improve absolute and relative positioning capabilities of nanosats
 - Explore propulsion-less formation control techniques
 - Transmit low-rate optical (laser) communications

Innovations

- Demonstrate m to cm level POD for cubesats
- Demonstrate mm-level inter-satellite ranging
- Demonstrate inter-satellite laser comm from a nanosat platform
- Evaluate performance of miniaturized atomic clock

RANGE - CONOPS

RANGE – DIFFERENTIAL DRAG

- Satellites will have no propulsion system
- Intersatellite distance (in plane)
 will be controlled through
 differential drag
 - Change in drag ratio (orientation)
 between the two satellites causes a relative motion
 - Well described in the literature, but few mission examples (Planet Labs, Aerospace AC6)
- Current mission plan will vary distance from hundreds to thousands of meters

RANGE - PAYLOAD

- Primary payloads
 - Novatel OEM628 Receiver (L1/L2)
 - Chip Scale Atomic Clock (CSAC)
 - < 2.5e-11 ADEV over 10s

CSAC

- Orbit validation through ground-based satellite laser ranging (SLR)
 - Service provided by the NLR/ILRS
 - Cm-level accuracy

Novatel Receiver

RANGE - PAYLOAD

- Laser Rx/Tx System
 - Made by Voxtel
 - 25 kW, 4 ns pulses
 - APD sensitive to nW
 - Custom optics design (GTRI)
 - 2.5° beam divergence to account for coarse s/c pointing
 - Class 1 (eye-safe), 1535nm
- Est. one-way detections to 500 km, dualway detections < 1km
- Same system will also be tested as a lowrate laser communications

RANGE – S/C DESIGN

RANGE - HARDWARE

Custom structure

HARDWARE

CHALLENGES AND NEXT STEPS

- Complete RANGE integration and testing
 - Flight software maturity
 - Environmental testing (thermal vacuum, vibration, antenna characterization)
- Controlling inter-satellite distance
 - Differential drag techniques still experimental
 - Want to avoid fast/out-of-plane separation of satellites
 - Refining simulations using advanced models (rarefied flow)
- Maintaining sufficient pointing control for laser Rx/Tx
 - 3-axis S/C pointing control expected to be 3-5°
 - With 2.5° laser beam divergence, continuous Rx/Tx not guaranteed
 - With only one reaction wheel, precise rotation only possible for one-axis
 - May require random attitude "search" until alignment achieved

Acknowledgements

- Terra Bella
- Office of Naval Research & Naval Research Laboratory
- Georgia Tech's Center for Space Technology and Research (CSTAR)
- Georgia Tech Research Institute (GTRI)
- Over 40+ graduate and undergraduate students involved to date

brian.gunter@aerospace.gatech.edu