LABORATORY VALIDATION OF VISION BASED GRASPING, GUIDANCE, AND CONTROL WITH TWO NANOSATELLITE MODELS

Subhransu Mishra, Max Basescu, Marin Kobilarov Autonomous Systems Control and Optimization Laboratory

JOHNS HOPKINS U N I V E R S I T Y MOTIVATION

SATELLITE SEF

PROXIMITY OPERATION

IS REMOVAL

2

SURFACE SAMPLING

FORMATION FLYING

Α

3

ENABLE CLOSE PROXIMITY AUTONOMOUS NAVIGATION
DEVELOP PERCEPTION AND CONTROL ALGORITHMS
DESIGN CUBESAT APPENDAGE FOR GRASPING

CUBESAT TEST-BED

• AIR-BEARING TABLE CUBESAT ENGINEERING MODEL

CUBESAT ENGINEERING MODEL

5

PROPULSION SYSTEM

COLD-GAS PROPULSION
FABRICATION BY RAPID PROTOTYPING
DESIGNED SPECIFICALLY FOR LAB TEST-BED
DESIGN CRITERIA
REUSABLE

6m I

- COMPACT
- SAFE

MACHINE VISION FOR PERCEPTION

CAMERA

3D RECONSTRUCTION

DYNAMICAL MODEL

 $\dot{R} = R\hat{\omega},$

ω: ANGULAR VELOCITY

- U: THRUSTER FORCES
- B: THRUSTER ALLOCATION MATRIX
- f_{ext} : ORBITAL PERTURBATIONS
- T_{ext}: GRAVITY GRADIENT

aj hj

$$\mu_{\rm t} = m \begin{bmatrix} 2\omega_c z \\ -\omega_c^2 y \\ -2\omega_c \dot{x} + 3\omega \end{bmatrix}$$

 $f_{
m ex}$

 $\boldsymbol{\tau}_{\mathrm{ext}} = 3\omega_c^2 R \boldsymbol{e}_z \times \mathbb{J} R \boldsymbol{e}_z$

CUBESAT INTERACTION SCENARIOS

11

DOCKING/RECONFIGURATION

• CHARGING

RELATIVE NAVIGATION

• DEORBITING

RECONFIGURATION AND CHARGING

12

2X

- LOCALIZATION WITH RESPECT TO SECOND CUBESAT
- NAVIGATION TO CLOSEST FACE
- GRASPING AND RECONFIGURATION
- CHARGING

RELATIVE NAVIGATION

13

3X

LOCALIZATION WITH RESPECT TO SECOND CUBESAT SECOND CUBESAT FOLLOWS PROGRAMMED TRAJECTORY NAVIGATION TO MAINTAIN FIXED OFFSET

DEORBITING MANEUVER

- DOCKED STATE
- NAVIGATION TO GOAL POSITION AND VELOCITY
- RELEASE OF SECOND SATELLITE
- NAVIGATION TO FINAL POSITION

SUMMARY

CUBESAT ENGINEERING MODEL WITH PROPULSION, SENSING, COMPUTATION, MANIPULATION

VISION BASED LOCALIZATION TECHNIQUES

 DEMONSTRATED CUBESAT INTERACTION SCENARIOS

FUTURE WORK

IMPROVED TEST-BED
FULLY RETRACTABLE GRIPPER
REFILLABLE GAS TANK
3U CUBESAT FORM FACTOR

ADVANCED PERCEPTION AND CONTROL

16

- IMPROVED PERCEPTION AND CONTROL ALGORITHMS
- COMBINED SYSTEM IDENTIFICATION AFTER GRASPING

QUESTIONS?

Subhransu Mishra (<u>smishra9@jhu.edu</u>) Max Basescu (<u>mbasesc1@jhu.edu</u>) Marin Kobilarov (<u>marin@jhu.edu</u>)