A Preliminary Design for the InSPiRESat-1 Mission and Satellite Bus: Exploring the Middle and Upper Atmosphere with CubeSats

Loren Chang, Jude Salinas, Jack Chieh Wang, Jia-Yu Su, Duann Yi, Joe Hong, Yi-Chung Chiu Institute of Space Science, National Central University, Taiwan

Steven C.R. Chen National Space Organization, Taiwan

Amal Chandran, Michael McGrath Laboratory for Atmospheric and Space Physics, University of Colorado, USA

Dave Fritts, Larry Gordley GATS, USA

John Fisher Brandywine Photonics, USA

INternational Satellite Program In Research and Education

- Objectives:
 - CubeSat constellation for Earth and Space Science Research
 - Global ground station network
 - Academic program in mission & spacecraft design, operations, and data analysis.

Middle & Upper Atmosphere

Ionospheric Variability Communications

Stratospheric Polar Vortex Weather Prediction

Limited Observational Ability

Gordley et al., SPIE 2013

Doppler Wind and Temperature Sounder

- New gas filter correlation radiometer measurements of wind and temperature (~25 – 250 km)
- Cross-track limb pointing IR camera with cryocooler. Processor for data aggregation.
- Designed and patented by GATS. Fabrication by University of Colorado LASP.
- Still requires operational heritage in space environment (TRL 4).

Doppler Wind and Temperature Sounder

Mass	4 kg
Volume	29 x 10 x 9 cm (3U)
Power	Standby and Operational: 7 W
	Safehold: 1 W
	Off: 0 W
Pointing Knowledge	±0.5 arcmin, all axes
Pointing Stability	< 6 arcsec/sec
Attitude Control	1° all axes
Field of View	Sun most not appear in field of view.
Spacecraft Velocity Knowledge	±1 m/s
Data Rate	Downlink 200 Mbits/day
Thermal Stability	FPA: ±0.1 K/minute
	Gas Cell: ±1 K/minute
Thermal Requirement	Anti-Sunward Side: -10 – 0°C
	Ricor K527 Cryocooler
Observed Emission	NO 5.3 μm
	Lockheed Martin SBF204 FPA

Mission Concept

• 350 – 650 km circular orbit.

• Estimated lifetime: > 1 year (350 km)

• Mission objectives:

- Tech demo of DWTS wind and temperature measurements from 30 – 200 km.
- Demonstrate using lunar scans to mitigate stray light effects.
- Sample all local times for all longitudes from 60°S - 60°N latitude (3 month operational period).

Is this feasible using a CubeSat platform?

DWTS Requirements & Solutions

Mass	4 kg	6U CubeSat bus	
Volume	29 x 10 x 9 cm (3U)		
Power	Standby and Operational: 7 W	Multiple EPS module and battery options from Clyde	
	Safehold: 1 W	Space, GOMSpace.	
	Off: 0 W		
		20 x GOMSpace NanoPower P110 Series solar panel	
Pointing Knowledge	±0.5 arcmin, all axes	Blue Canyon XACT ADCS	
Pointing Stability	< 6 arcsec/sec		
Attitude Control	1° all axes	Periodic vaw maneuvers	
Field of View	Sun most not appear in field of view.		
Spacecraft Velocity	±1 m/s	Multiple COTS GPS solutions:	
Knowledge		SkyFox Labs pqNAV-L1/FM, Surrey SGR-05U, SSBV GPS	
		Receiver, GPSRM 1	
Data Rate	Downlink 200 Mbits/day	Astrodev Helium (VHF/UHF)	
		Ground Stations:	
		Colorado, Taiwan, Singapore, India	
Thermal Stability	FPA: ±0.1 K/minute	Integrated Ricor K527 Cryocooler (DWTS)	
	Gas Cell: ±1 K/minute	Passive thermal control components.	
Thermal Requirement	Anti-Sunward Side: -10 – 0°C		

Power Budget using COTS Solutions

	INS	PIRES	at-1 Power Budget (Ful	Duty Cycle)		
	Subsystem	Powe	er Requirement	Notes		
	DWTS	7 W		Operational & Standby modes		
	NAV	1.3 V	V	GPSRM	1	
	EPS	-				
	CDH	0.003 W 6 W		CubeSat Kit Motherboard		
	COM			Astrodev Helium (Transmit mode)		
	ADCS	2.83	W	Blue Ca	anyon XACT	
	Total	17.133 W 0.8566				
	Margin			5% required power consumption.		
			Requirement		COTS Solution	
Solar Panel Power		44 W (30% power loss)		20 x GOMSpace NanoPower P110 Series solar panels		
Battery Capacity		20 Wh (70% efficiency, 80% DOD)		Multiple EPS module battery options from Space, GOMSpace.	and Clyde	

Mass Budget using COTS Solutions

INSPIRESat-1 Mass Budget			
Subsystem	Mass	Notes	
DWTS	4 kg	-	
NAV	0.012 kg	pqNAV-L1/FM	
EPS	0.2 kg	Power supply	
	0.6 kg	GOMspace solar panels	
CDH	0.088 kg	CubeSat Kit Motherboard	
СОМ	0.078 kg	Astrodev Helium	
		(no antenna)	
ADCS	0.85 kg	XACT Capability	
STR	1.64 kg	Pumpkin SuperNova 6U	
TCS	-	TBD	
Total Estimate	7.468 kg		
Margin	0.532 kg	Based on 8 kg total mass requirement.	

Risks Identified

			EPS	<mark>-40</mark> ~ 85°C
	Pointing Knowledge	±0.5 arcmin, all axes	Batteries	<mark>5 ~ 20</mark> °C
			Solar Panels	-150 ~ 110°C
$\beta = 90^{\circ}$	Pointing	< 6	DWTS	-30 ~ 20°C
	Stability	arcsec/sec	GPS	- <mark>40</mark> ~ 85°C
<u> </u>			ADCS	-10 ~ 40°C
	Attitude	1° all axes	Motherboard	- <mark>40</mark> ~ 85°C
$\beta = 0^{\circ}$	Control		Antennas	-100 ~ 100°C

Steady State Temperature Range (600 km):

-69.4°C ~ 50.1°C

Operational

Components

Subsystem	EPS	ADCS	Thermal
Risk	High power requirements No Sun at certain beta angles	Attitude knowledge and control requirements	Expected temperature range exceeds component survival range.
Mitigation Options	 Reduced payload duty cycle Steerable solar panels Perpendicular fixed arrays 	 Blue Canyon XACT ADCS module DWTS cryocooler duty cycling to minimize disturbance torques. 	 Component level thermal modelling. Passive thermal control components for non-payload subsystems.

Summary & Future Work

- INSPIRESat-1 with DWTS as payload addresses pertinent scientific needs for middle and upper atmospheric wind and temperature measurements on a global scale.
- Independent preliminary studies from students at NCU, CU, and IIST show that a 6U CubeSat with COTS components is feasible as a spacecraft option for DWTS.
- Conceptual designs and analysis being used to modify payload design and mission success criteria, in preparation for payload and spacecraft fabrication.