13th Annual Summer CubeSat Developers' Workshop

Multi-algorithmic Hybrid Attitude Determination and Control System of the CubeSat "CADRE"

Dae Young Lee, Prince Kuevor, and James W. Cutler

UNIVERSITY of MICHIGAN
COLLEGE of ENGINEERING

Introduction

ADCS Design Process

Sensors and Actuators

- Each device has pros and cons.
- For magnetometer and photodiode, specific calibration algorithm is implemented.

Sensors and Actuators

•

- Device install position and angle are important for the performance of ADCS
- **5 degree** Angular Uncertainty over attitude sphere Angular Uncertainty over attitude sohere Angular Uncertainty over attitude sphere Photodiode Star tracker -0.2 Reaction -100 -0.5 0.5 Elevation (deg) [Y] Wheels Azimuth (deg) Azimuth (deg) Assembly 0 degree Angular Uncertainty over attitude Angular Uncertainty over attitude sphere Angular Uncertainty over attitude sphere 0.8 Magnetorquer Magnetometer -100 -0.5 0.5 -150 -100 -50 50 Elevation (deg) [X] [Y] Azimuth (deg) Azimuth (dea)

Embedded System Design

ADCS middleware is implemented to manage sensors and actuators

Estimation algorithm

EKF

OUEST

Initial value is important for the convergence of filter estimation

QUaternion ESTimation (QUEST) suggest the initial estimation for EKF

For valid estimation with low cost sensor, de-tumbling is required.

B-dot

Control algorithm

Desaturation

Wheel desaturation developed by Lovera et al. is unified with Bang-Bang control – Exact attitude and body angular velocity estimation is required

 $m_k = -\frac{k_{mag}}{\|b_k\|^2} (b_k)^{\times} \pi_k$. Wheel momentum

Hybrid ADCS development

Muti-algorithmic hybrid system is implemented for a active ADCS of CubeSat

Simulation : Structure

SO(3)

Lie group variational integrator of Spacecraft with reaction wheel assembly

Simulation : Control results

Disturbance torques increase the wheel speed

Bang-Bang control is enough for B-dot and Desaturation control

During desaturation, ADCS might lose pointing accuracy

Simulation : Estimation results

Y axis uncertainty has lower average because of the star tracker delay

 Uncertainties are smaller when spacecraft has low angular velocity

Hardware-in-the-loop simulation

• The test in MXL

The test in Naval Postgraduate School
 With Professor Romano and Dr. Park

https://youtu.be/qTDsV8Fm69g

https://youtu.be/lm_yzOqYAJc

Conclusion

- An active attitude determination and control system (ADCS) with a hybrid control strategy is proposed and applied to CADRE.
- To accomplish 1 degree pointing accuracy, pre-developed control and estimation algorithms are modified and unified into a hybrid strategy based on a finite-state machine.
 - Each state and the transition conditions of the finite-state machine are also defined and verified through simulations.
- To demonstrate accurate simulation results, we develop a dynamic satellite simulator that implements a Lie Group Variational Integrator of a spacecraft with the reaction wheel assembly.
 - The simulation library will be opened to cubesat developers and students
- Simulation results demonstrate that the active ADCS successfully performs the specified fine pointing control.

