

A Europa CubeSat Concept Study for Measuring Europa's Atmosphere

N. Chanover, J. Murphy, K. Rankin, S. Stochaj, A Thelen New Mexico State University SmallSat Conference 2016 in Logan UT

Task

- JPL is flying Europa Multiple Flyby Mission (Europa Clipper) – Launches mid 2020s
- Interested in what could be done with a 3U CubeSat deployed from the clipper
- Resulted in DARCSIDE
 - Deployable Atmospheric Reconnaissance CubeSat with Sputtering Ion Detector at Europa

Europa Atmosphere

- Decided to study Europa's atmosphere
- Two Experiments
 - Drag measurement Heritage to Mars aerobraking
 - High energy particle detector Heritage to Voyager particle detectors
- Want to improve understanding of icy satellites (moons)
- Implications for understanding Europa's surface

Formation of Europa's Atmosphere

McGrath et al. (2009)

Planetary Protection

- Planetary Protection Category III Mission
 - Can never touch the surface of Europa
 - Has significant implications for mission termination sequence

Mission Design

Orbital Trajectory

- Release shortly before apogee
- Cruise 175.66h (7 days)
- Burn right before Europa increases drag & sets up bi-elliptic transfer
- Targeting a pass over Europa at 1km – 10km
- Mission Termination generates an inclined orbit with a lower perijove then Europa.

Maneuver	ΔV (m/s)
First Burn	3.1
Optional burn to increase drag	200
Mission Termination	100
ADACS & TCM	30
Total	333.1

Particle Detector

 Voyager Heritage

D1-D4 are silicon strip detectors. Each pair, (D1,D2) and (D3,D4), will provide a set of x-y coordinates for the Θ correction. ΔE (dE) is measured in each layer. dx is the layer thickness corrected for the angle. The total Energy deposited is the sum of all the ΔE 's. The particle stops before the exiting the last layer.

 $dE/dx \sim Z^2/v^2$ $E \sim 1/2 \text{ m v}^2$

MEMS Nano-G Accelerometer

- Under development by AFRL
- Detection limit of 10 nano-g (9.8 * 10⁻⁸m/s)
- Capable of measuring predicted drag on DARCSIDE

Eric K. Sutton, Chin S. Lin, Frank A. Marcos, David Voss. 2010. "A CubeSat Constellation to Investigate the Atmospheric Drag Environment," *Proceedings of the AIAA/USU Conference on Small Satellites*, Mission Payloads, 7. http://digitalcommons.usu.edu/smallsat/year/all2010/7/

Deployables

Europa Atmosphere models

- Used published models to initialize Europa's neutral atom torus
- Assumed atmospheric models based on two particle populations:
 - Bound (but exponentially decreasing w/altitude)
 - Escaping
- Computed family of atmospheric density profiles with range of surface gas densities

Atmosphere Density

Drag Estimates

DARCSIDE Spacecraft Bus

DARCSIDE Avionics

Questions?

