

CubeSat Mission Benefits and Integration of High Thrust, High ΔV Green Propulsion

Presented at 2016 13th Annual CubeSat Developer's Workshop, San Luis Obispo, CA, USA April 20th-22nd 2016

Steve Overton, May Allen, Dr. Bob Masse, Dr. Ron Spores and Liz Driscoll Aerojet Rocketdyne, Redmond, WA

MPS-130 Program Status

- CubeSat Mission Benefits and Integration of High Thrust, High ΔV Green Propulsion
 - Selected for award: Nov 2015
 - Negotiations ongoing
 - Contract award: early-mid May 2016
 - 12-15 (with schedule margin) month program to deliver 1U flight unit
 - Program efforts are focused on qualification details
 - Rigorous analysis
 - Hot fire test
 - Qualification tests
 - Final build and acceptance tests
 - Optimization of the catalyst bed heater and thrust chamber for cost and performance

This program effort removes a significant barrier to customer use: NRE costs

MPS-130 Overview

- Aerojet Rocketdyne MPS-130 Modular CubeSat Propulsion System provides total impulse: approximately 1.4× hydrazine, 2× condensables, 10× cold gas
- MPS-130 enables low altitude CubeSat missions, 25-year de-orbit capability at altitudes up to 800 km, deterministic re-entry, and deployment to LEO from GTO launch vehicles
- Propulsion-enabled CubeSats offers increased mission capability per unit cost
- Lowers cost of access to orbits that cannot be reached as secondary payloads
- Expands range of mission capabilities above other conventional propulsion solutions

<u>1U MPS-130</u> Modular CubeSat Propulsion Systems

MPS-130 System Properties

- Tipping Point effort qualifies the 1U configuration
- AR also working parallel efforts to provide additional (2U) configurations
 - Increased ΔV
 - Interface electronics
 - Enables larger CubeSat configurations... 12U, 24U...

System Properties	1 U Configuration (this effort)	2U Configuration (in work)	
System Dry Mass (kg)	1.7	2.0	
Usable Propellant Mass (kg)	0.5	1.3	
Total System Mass (kg)	2.2	3.3	
Dimensions (cm)	$10 \times 10 \times 11.4$	$10 \times 10 \times 22.4$	
Operating Temperature (C)	-5 to 50		
Heater Power per Thruster (W)	TBD		
Valve Power per Valve (W)	<4 at startup / <1 for operation		
Valve Voltage (Vdc)	6-8 at startup / 1-2 for operation		

Hazards Class of Green Propellants

High density lsp green propellants complement volume constrained CubeSats

- Lower toxicity
- Very low vapor pressure
- No SCBA required
- Reduced launch, range, and operations costs

Hazard	N2H4 (reference)	Green Propellants		
		AF-M315E (HAN)	LMP-103S (ADN)	Hydrogen Peroxide
Flammability (C)	53	106	11 (methanol)	Non-flammable
Vapor pressure (psi)	0.28	Not measurable	147(ammonia)	0.097
Toxicity - TLV / TWA (ppm)	0.01	N/A No vapor	25 (ammonia)	1
Toxicity - LD ₅₀ (mg/kg)	57	550	350 (ammonia)	1518
Transportation Hazard Classification	8 corrosive3 flammable6.1 poisonous	1.4S w/packaging 1.3C w/o packaging	1.4S w/packaging 1.3C w/o packaging 1.1 open container	5.1 oxidizer 8
Corrosive	yes	no	no	yes
l _{sp} (sec) - Theoretical	242	266	252	161
Density (g/cc)	1.01	1.47	1.24	1.45

Rocketdyne

Enabling ΔV Capability

1U MPS-130 Configuration

- $~\sim$ 0.5 kg of propellant
- Nominally 2 year mission life
- Primary propulsion
- 3-axis attitude control

2U MPS-130 Configuration

– \sim 1.3 kg of propellant

Enabled High ΔV Missions

- Independent orbit raising from ISS / Upper Stage drop-off
- Constellation deployment/sparing
- Low LEO drag make-up
- Proximity ops / formation flying
- De-orbit capability

AF-M315E approx. 40% increase in density lsp

Integration Options

- Most small business / CubeSat customers do not have capabilities to handle high performance propellants
 - Green propellants currently require explosive facility certification
 - Green propellants require shipping certification for HMC 1.4S
 - AR is working to make this process easier and cost effective

LEO Mission Capabilities – 3U @ Solar Max

3U CubeSat Life Map at Solar Maximum ($F_{10.7}$ = 300, Ap = 40)

Increased mission life at low altitudes & de-orbit from higher altitudes

*Curves shown for hydrazine, AF-M513E increases performance 40%

LEO Mission Capabilities – 3U @ Solar Min

Increased mission life at low altitudes & de-orbit from higher altitudes

3U CubeSat Life Map at Solar Minimum ($F_{10.7} = 65$, Ap = 0)

LEO Mission Capabilities – 6U @ Solar Max

Increased mission life at low altitudes & de-orbit from higher altitudes

Nominal Circular Altitude (km)

LEO Mission Capabilities – 6U @ Solar Min

Increased mission life at low altitudes & de-orbit from higher altitudes

6U CubeSat Life Map at Solar Minimum $(F_{10.7} = 65, Ap = 0)$

LEO De-Orbit Capabilities

Deterministic de-orbit from circular LEO orbits up to 800 km and 350 km, for 3U and 6U CubeSats, respectively (to ~500 nm dia.)

GTO Mission Capabilities

De-orbit from GTO by providing retro-propulsive capability to reduce the perigee of a typical GTO orbit.

Shown to the right is a typical orbit trace from GTO down to LEO, where the orbit can be circularized.

For a wide range of ballistic coefficients (20-200 kg/m2), the MPS-130 lowers apogee to LEO altitudes within 60 days, minimizing transit time through the radiation belts.

GTO to LEO Mission Capabilities

High ballistic coefficients (200 kg/m²) can be moved from GTO to LEO for a relatively small amount of ΔV , leaving significant ΔV available after circularization at LEO altitude

Summary / Conclusions

Current Capabilities:

- General ΔV available for:
 - Independent orbit raising from ISS / Upper Stage
 - Constellation deployment/sparing
 - Low LEO drag make-up
 - Proximity ops / formation flying / attitude control / orbit maintenance
 - De-orbit capability
- Life extension at low LEO altitudes, de-orbit within 25 years at high altitudes
- Deterministic re-entry from up to 800 km for 3U, and 350 km for 6U
- Enables rideshare on GTO LVs for insertion to LEO within 60 days

What's Ahead:

- Development is proceeding with potential first flight with NASA in the 2018 timeframe / Pathfinder Technology Demonstration (PTD) Mission
- Parallel flight opportunities welcome
- Options that increase total impulse

