

CubeSat-Based Laser Guide Stars

Weston Alan Marlow April 22, 2016

MIT Space Systems Laboratory (SSL) Space, Telecommunications, Astronomy, and Radiation (STAR) Laboratory

Advisor: Professor Kerri Cahoy

Assistant Professor, MIT Department of Aeronautics and Astronautics Director, MIT STAR Lab

Coauthors: Ashley Carlton, Hyosang Yoon, Christian Haughwout MIT SSL, STAR Lab

Dr. Jared Males

NASA Fellow, University of Arizona Steward Observatory

- Background
- Motivation
- Approach
- Feasibility Analysis
- Summary and Acknowledgements

- Background
- Motivation
- Approach
- Feasibility Analysis
- Summary and Acknowledgements

- Greenaway (1991) proposed a satellite guide star system using highly elliptical orbits for astronomical imaging^[1]
 - Intent to roughly match sidereal rates during a portion of the orbit
 - Enable fairly long integration times (~5000 seconds)
- We revisit this work and analyze such a guide star system
 - Using the Thirty Meter Telescope (TMT) as the imaging system
 - Integration times are relative to the *Isoplanatic Patch* patch of sky where adaptive optics (AO) corrects the wavefront[3]

Rendering [2] of the Thirty Meter Telescope at Mauna Kea in Hawaii.

Proposed completion in 2022

Analysis of Previous Work

- The rise of CubeSats
 - CubeSat-class satellites and their proliferation
 - CubeSat propulsion system development [4]
 - Low size, weight, power commercial laser systems [5]
 - Low-cost launch opportunities [6]
- For manuscript in preparation on this topic, we consider GEOlocated satellite guide star for imaging GEO satellites[7]
 - Allows for long integration times
 - Maneuverability within GEO
 - Delta-V requirements found to be consistent with expected CubeSat propulsion capabilities

Why not simply have a telescope in or near GEO to image targets directly?

- Background
- Motivation
- Approach
- Feasibility Analysis
- Summary and Acknowledgements

Space-based Imager

$$\theta = 1.22 \frac{\lambda}{D}$$

 θ = angular resolution λ = 550 nm (visible) D = aperture diameter space-based imager, no atmospheric effects

- Satellite separation at GEO distance ~550 km, based on GEO population survey[9]
- To resolve features ~10 cm in diameter (CubeSat-size), angular diameter is thus:

$$2\tan^{-1}\left(\frac{0.05\ m}{550\ *\ 10^3\ m}\right) = \ \mathbf{0}.\ \mathbf{18}\ \mu rad$$

And the required aperture for such a system:

$$D_{apt} = 1.22 \left(\frac{550 * 10^{-9} m}{0.18 * 10^{-6}} \right) = 3.7 m$$

Weston Alan Marlow

Space-based Imager

4/21/2016

Survey of the space catalog out to GEO

• Survey of the space catalog out to GEO

GEO Belt Detail

Survey of the space catalog out to GEO

Scatter Plot GEO Population vs Inclination 20 18 GEO Satellite Population 11 105° West Two Wells, 16 Well, 39 15 75° East 14 Well, 83 Inclination, deg Debris, 18 10 Rocket Body, 85 6 Payload, 706 4 Can we image these high-value satellites using nextgeneration ground systems? 3.8 Orbital Altitude, km $\times 10^4$ Image credit: W. Marlow, MIT

- Background
- Motivation
- Approach
- Feasibility Analysis
- Summary and Acknowledgements

Ground-based AO Imaging[12]

- Image CubeSat-sized neighboring objects around high-value systems with ground AO stations
 - Simulated with 3.65 m AO telescope
 - Boeing Model 702 GEO satellite
 - 3 seconds of total integration time

Ground-based AO Imaging[12]

- Image CubeSat-sized neighboring objects around high-value systems with ground AO stations
 - Simulated with 3.65 m AO telescope
 - Boeing Model 702 GEO satellite
 - 3 seconds of total integration time

At this resolution or better: Monitor deployments or maneuvers in real-time Discriminate resident space objects near GEO assets

Original targetMROI only8Image from Young, et al."Interferometric imaging of geo-synchronous satellites with ground-based telescopes"
Aerospace Conference, 2013 IEEE

Interferometric Imaging^[13]

- Interferometric imaging simulation results show promise
 - Magdalena Ridge Observatory Interferometer (MROI)
 - Visual magnitude 8 GEO target, 27 m longest dimension

16

Interferometric Imaging[13]

- Interferometric imaging simulation results show promise
 - Magdalena Ridge Observatory Interferometer (MROI)
 - Visual magnitude 8 GEO target, 27 m longest dimension

These systems would benefit from a calibration source that is spatially stationary but repositionable

Aerospace Conference, 2013 IEEE

- Background
- Motivation
- Approach
- Feasibility Analysis
- Summary and Acknowledgements

Notional 6U Design

1. Power

- 6U Main deployable & body panels
- >50 W nominal

2. Communications

- S, C, or X band patch antenna
- **3. ADCS**[14]
 - All-in-one (reaction wheels, mag torquers, star tracker)
 - Stand alone star tracker

4. Laser Transmitter

- 1-W 850 nm output (10 W input)
- MOPA configuration with fine steering mirror

5. Command & Data Handling

- Custom and COTS heritage HW
- Custom flight software

6. Propulsion

- Monopropellant system shown[15]
- 4 x 0.5 N thrusters

7. Launch Opportunities

- Requires ride-share with GEO launch
- Comprised 24 out of 73 launches in 2014[16]

Image credit: M. Khatsenko, MIT

6

Required Laser Power

- Pointing ability directly affects required laser power
 - Two-stage pointing approach is most appropriate[17]
- Current MIT STAR Lab projects exploring precision laser pointing
 - Nanosatellite optical downlink experiment (NODE)
 - Free-space lasercomm and radiation experiment (FLARE)
 - KitCube, lunar distance lasercomm downlink

Required Laser Power

- Pointing ability directly affects required laser power
 - Two-stage pointing approach is most appropriate[17]
- Current MIT STAR Lab projects exploring precision laser pointing
 - Nanosatellite optical downlink experiment (NODE)
 - Free-space lasercomm and radiation experiment (FLARE)
 - KitCube, lunar distance lasercomm downlink

Delta-V and Integration Time

- GEO CubeSat guide star maneuvering slightly out of GEO belt
 - Acts as a passing reference source
 - "Integration time" refers to time within isoplanatic patch
 - Monopropellant system can deliver 500-600 m/s delta-v
 - Propulsion in development with >5 km/s delta-v (electrospray)[4]

Maneuvering Around GEO

- Maneuvering via subsynchronous or supersynchronous Hohmann transfers
 - Maneuver to imaging target and remain stationary during imaging
 - Demonstration mission with monoprop. could have >10 maneuvers
 - With electrospray propulsion could have >100 maneuvers

- Background
- Motivation
- Approach
- Feasibility Analysis
- Summary and Acknowledgements

- CubeSat technology is a key enabler for revisiting the concept proposed by Greenaway (1991)
- CubeSat guide stars for AO ground systems
 - Increase capability for astronomical observations
 - Allow for high-quality GEO belt imaging from ground
- High flexibility in integration times and low delta-v maneuver costs make these attractive systems
- Upcoming (2018) launch service for 6U CubeSats to GEO[6] make these highly feasible

Funding in the near future would allow for a demonstration mission to align with GEO CubeSat launch service

- Prof. Kerri Cahoy
 - Associate Professor of Aeronautics and Astronautics, MIT
- Dr. Jared Males
 - University of Arizona Steward Observatory
- Weston Marlow
 - PhD Candidate, MIT Space Systems Lab, STAR Lab
- Ashley Carlton
 - PhD candidate, MIT Space Systems Lab, STAR Lab
- Hyosang Yoon
 - PhD candidate, MIT Space Systems Lab, STAR Lab
- Christian Haughwout
 - Master's student, MIT Space Systems Lab, STAR Lab

References

- 1. A. H. Greenaway, "Space Astronomical Telescopes and Instruments.," Proc. SPIE 1494, 8 (1991)
- 2. Image source http://www.tmt.org/gallery/renderings
- 3. J. M. Beckers, "Increasing the Size of the Isoplanatic Patch with Multiconjugate Adaptive Optics," ESOC Proc. 30, 693 (1988).
- 4. P. Lozano, et al., "Massachusetts Institute of Technology Space Propulsion Laboratory ion Electrospray Propulsion System for CubeSats." Pauweb.mit.edu/aeroastro/labs/spl/research_ieps.htm, Accessed April 13, 2016.
- 5. Thorlabs, Inc. "NIR Laser Diodes: Center Wavelengths from 705 nm to 2000 nm." https://www.thorlabs.com/ newgrouppage9.cfm?objectgroup_id=4737, Accessed April 13, 2016
- 6. Spaceflight Industries, Inc., "Schedule and Pricing." http://www.spaceflight.com/schedule-pricing/, Accessed April 13, 2016.
- 7. W. Marlow, A. Carlton, H. Yoon, J. Males, C. Haughwout, and K. Cahoy, "Laser Guidestar Satellite for Ground-based Adaptive Optics Imaging of Geosynchronous Satellites." Massachusetts Institute of Technology, Unpublished.
- 8. L. W. J. Wertz, J. R., Space Mission Analysis and Design, Third Edition. (1999).
- 9. R. Jehn, V. Agapov, and C. Hernandez, "End-Of Disposal of Geostationary Satellites," in 4th European Conference on Space Debris, D. Danesy, Ed., ESA Special Publication 587, 373 (2005).
- 10. Image source http://hubblesite.org/gallery/spacecraft/25/large_web
- 11. D. Hope, S. Jefferies, and C. Giebink, "Imaging Geo-synchronous Satellites with the AEOS Telescope," in Advanced Maui Optical and Space Surveillance Technologies Conference, 33 (2008).
- 12. Data from Skinner, et al., "Commercial space situational awareness: An investigation of ground-based ssa concepts to support commercial geo satellite operators," in Proc. AMOS Conference 2013, (2013).
- 13. J. Young, C. Haniff, and D. Buscher, "Interferometric imaging of geo-synchronous satellites with ground-based telescopes," in Aerospace Conference, 2013 IEEE, 9 (2013).
- 14. Blue Canyon Technologies, BCT XACT Datasheet.
- 15. Busek Space Propulsion and Systems, BGT-X5 Green Monopropellant Thruster Datasheet.
- 16. "State of the satellite industry report," tech. rep., The Tauri Group, http://www.sia.org/wpcontent/uploads/2015/06/Mktg15-SSIR-2015-FINAL-Compressed.pdf (2015).
- 17. Ryan W. Kingsbury, Kathleen Riesing, Tam N. Nguyen, and Kerri Cahoy. TwoStage Control for CubeSat Optical Communications. Presentation at the CalPoly CubeSat Developers' Workshop, San Luis Obispo, CA, 2014.

Questions?

Telescope Zenith Angle Effects

• Higher zenith angle decreases effective isoplanatic angle

Image credit: W. Marlow, MIT

Ground System FOV

Sodium-layer Guide Stars

- Explored 'Greenaway' orbit
 - Difficult with highly elliptical orbits
 - Very short integration times (orbits are designed for sidereal rate matching)
 - Sparse imaging opportunities
- Leads to the need for a GEO-specific orbit for GEO imaging

http://www.tmt.org/gallery/renderings

Next Generation Optics

http://www.gmto.org/Resources/Still-GMT-S21-hi-res.jpg

Imaging Within Isoplanatic Patch

Diagram of guide star traversal during imaging of GEO object

Diagram of guide star traversal during imaging of GEO object

Image credit: W. Marlow, MIT

Orbit Assignment

Diagram of slow vs fast transits relative to imaging target

Results in resolution 30-90 times worse than diffraction limit

Fried's parameter and FWHM Criteria

are limited by effects of turbulence

 θ = angular resolution

D = aperture diameter

FWHM = Full width at half-max

For optical systems, angular resolution is limited by diffraction

 $\theta = 1.22 \frac{\lambda}{D}$

Optics Basics

– For circular apertures, it is defined as the Rayleigh criterion:

 $FWHM \cong \frac{\lambda}{-}$

 λ = wavelength (500nm or 850nm for this talk)

r₀ = Fried's parameter, captures turbulence effects

Optical systems viewing through the atmosphere

Airy disk patterns https://en.wikipedia.org/wiki/ Airy disk

Optics Basics

- Fried's parameter
 - Captures atmospheric effects:

$$r_0 \cong 0.98 * 0.206265 \left(\frac{\lambda_{LCO}}{FWHM_{500nm}}\right) \left(\frac{\lambda_{desired}}{\lambda_{LCO}}\right)^{\frac{6}{5}} sec(\beta)^{-\frac{3}{5}}$$

 $\lambda_{Las \ Campanas \ Observatory(LCO)} = 500$ nm $\lambda_{desired} = 850$ nm Full width at half max(FWHM)= aperture diameter β = zenith angle, 0° for best-case

- Leads to Isoplanatic Patch
 - Patch where disturbance qualities assumed to be temporally coherent
 - Key metric for talk

$$\theta_{iso} \cong 0.314 \frac{r_0}{h}$$

h = altitude of characteristic turb. layer

Adaptive Optics

Goal is to achieve $\theta \cong \frac{\lambda}{D}$ for well-performing AO systems

Natural Guide Stars

Sodium-layer Guide Stars

Proposed CubeSat Guide Stars

Image credit: W. Marlow, MIT