
System of Systems Engineering for low-cost CubeSat Development An OpenOrbiter Project Update

<u>Michael Wegerson</u>¹, Jeremy Straub², Ronald Marsh² ¹Department of Electrical Engineering, ²Department of Computer Science

UND^{UNIVERSITYOF} **NORTH DAKOTA**

Presentation Overview

- System of Systems Engineering
 - Electrical Power System
 - Attitude Determination and Control System

Low-Cost Fabrication Methods

 – Successes and Challenges
 ^{Fig.}

Fig. 1 OpenOrbiter 1U CubeSat Renderin

April 22nd 2016, 13th Annual CubeSat Developers' Workshop Copyright 2016 - Michael Wegerson

OPEN Project

- <u>Open Prototype for Educational</u> <u>Nanosatellites</u>
 - Started in 2012
 - Student Led
- Project Goals
 - Low-cost
 - Versatile Framework
 - Open-Source Designs

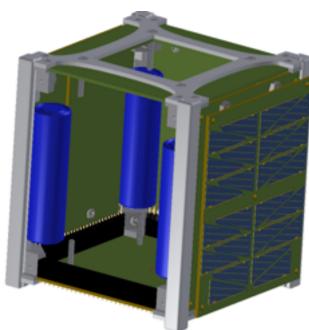
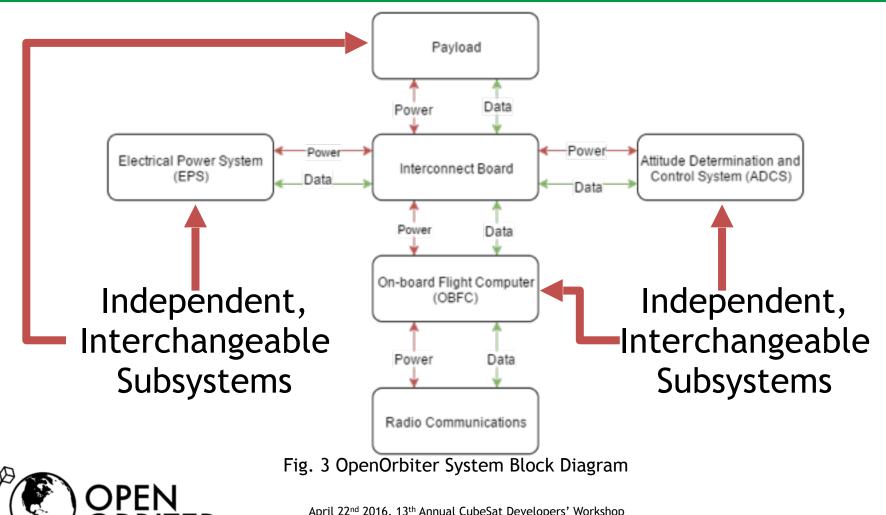


Fig. 2 Cutaway Model of OpenOrbiter

2


System of Systems Engineering Design

- System of Systems Engineering (SoSE)
 - "Systems managed for their own purpose rather than the purposes of the whole."
 - Hierarchical
 - Black Box Design
- Why an SoSE approach for OpenOrbiter?
 - Separate systems allow for greater flexibility
 - "Plug-and-Play"
- Implementation
 - Standard Interface for board connection
 - Individual Subsystem Microcontroller
 - Ethernet & I2C Communication Protocols

System of Systems Engineering Design

April 22nd 2016, 13th Annual CubeSat Developers' Workshop Copyright 2016 - Michael Wegerson

ΓFR

SoSE: Electrical Power System

- Challenges of Monolithic Designs
 - Trouble diagnosing complications
 - Division of Labor
 - Learning Curve

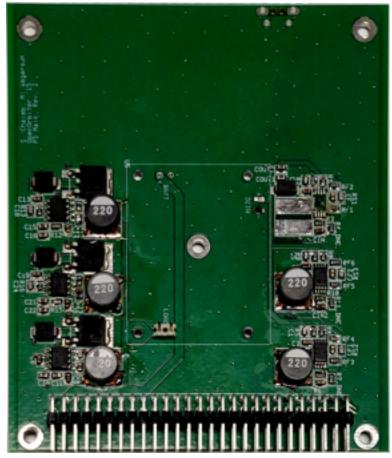


Fig. 4 Electrical Power System PCB, Revision 2 $_{5}$

SoSE: Electrical Power System

- Implemented SoSE in EPS Revision 3
 - Modules vs Monolithic PCB
 - Flexible Development

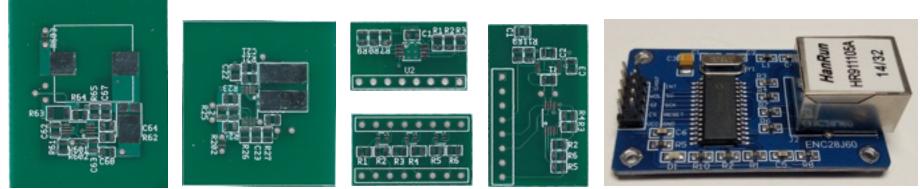


Fig. 5 EPS Rev.3 Prototyping Modules: (left to right) Output Conditioning, Solar input conditioning, Temperature Sensor (top), System Toggle Circuit (bottom), Current/ Coulomb ICs, SPI-to-Ethernet Communication Adapter.

Attitude Determination and Control

- Low-Cost, SoSE Approach
- Description of Concept
- Benefits of this approach

 Changing Fuel Model
 Patent Pending
- Direction Forward

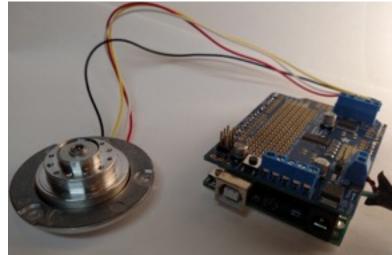


Fig. 6 Reaction Wheel Initial Test using Arduino Controlle

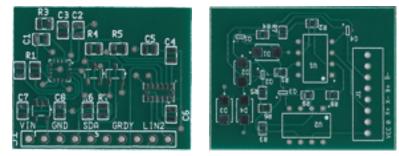


Fig. 7 IMU (left) & Magnetorquer (right) PCBs

In-house Fabrication Methods

- Prove efficacy of low-cost production techniques
- Electrical Design
 PCB Milling
 - Fabrication
 - Testing
- Mechanical Design
 - Structure Milling
 - Frame Anodizing

April 22nd 2016, 13th Annual CubeSat Developers' Workshop Copyright 2016 - Michael Wegerson

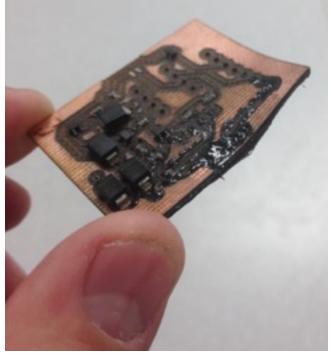


Fig. 8 Less than successful PCB Fabrication...

In-house Fabrication: Electrical

• Reflow Soldering Process

Fig. 9 High-Tech Solder Reflow Oven with added Temperature Monitor

April 22nd 2016, 13th Annual CubeSat Developers' Workshop Copyright 2016 - Michael Wegerson

In-house Fabrication: Electrical

• Reflow Soldering Process

Fig. 10 PCB in the Reflow Soldering Process

In-house Fabrication: Mechanical

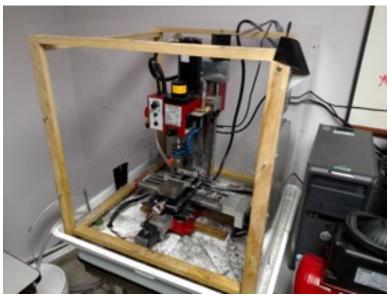


Fig. 11 Custom CNC Drill for Aluminum Frame Milling

Fig. 12 Test Milling of Aluminum CubeSat Post

Conclusion

- SoSE Design Method
 - Easy for Universities
 - Rapid Development
 - Interchangeability
- In-house Fabrication
 - Successes
 - Challenges
 - Space-rated?

- Project Timeline
 - Completion of Satellite
 Subsystems (June)
 - Testing and
 Verification (August)
 - Open-source
 Publication
 (September)
 - Hand-over (October)
 - Launch! (December)

Email: michael.wegerson@und.edu

More Information? Open Orbiter Small Satellite Development Initiative openorbiter.und.edu

Special Thanks to the University of North Dakota's Intercollegiate Academics Fund for providing resources for attending this conference.

April 22nd 2016, 13th Annual CubeSat Developers' Workshop Copyright 2016 - Michael Wegerson

References

- 1. Kading, B., Straub, J., & Marsh, R. (2015). Open Prototype for Educational NanoSats CubeSat Structural Design. In University of North Dakota School of Graduate Studies Scholarly Forum.
- 2. S. Chaieb, M. Wegerson, B. Kading, J. Straub, R. Marsh and D. Whalen, "The OpenOrbiter CubeSat as a system-of-systems (SoS) and how SoS engineering (SoSE) Aids CubeSat design," *System of Systems Engineering Conference (SoSE), 2015 10th*, San Antonio, TX, 2015, pp. 47-52.

