Ground Link Characterization Utilizing Bit Error Rate with Noise Introduced

NATHANIEL RICHARD & KEVIN BROWN

MOREHEAD STATE UNIVERSITY

Overview

Introduction

Equipment Setup

Procedure

Results

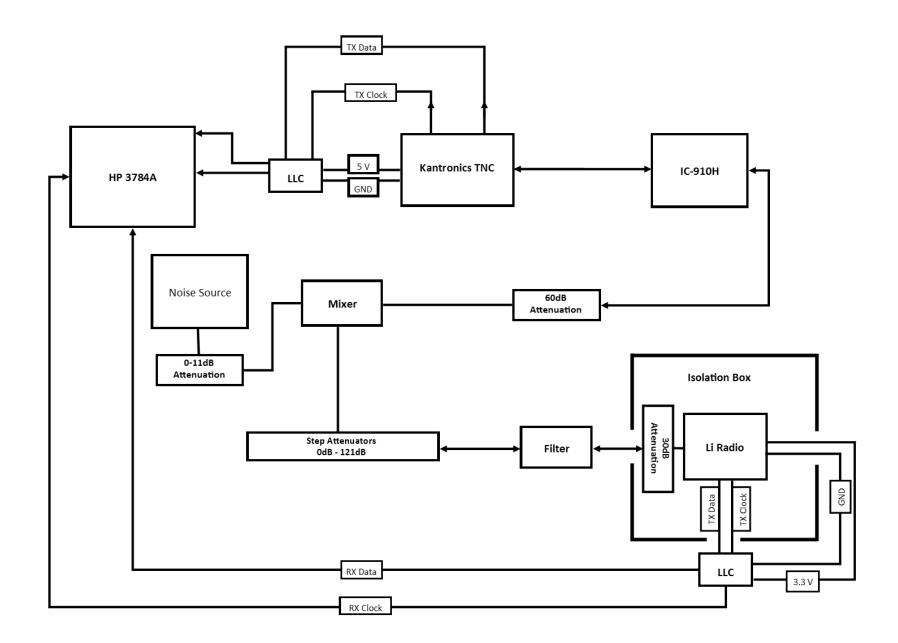
Future Work

IARU restricts Amateur UHF satellite communication to the 435MHz - 438Mhz range

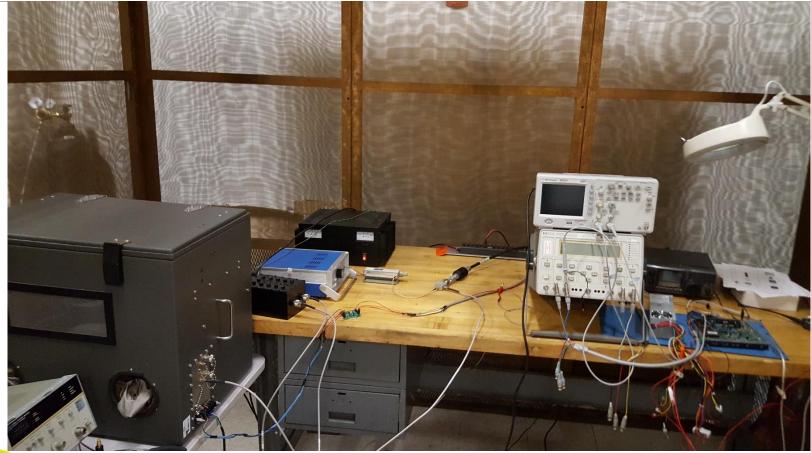
This narrow frequency band restricts the bandwidth a mission can have

Restricted bandwidth limits data rates

Mission	Frequency (MHz)	Bandwidth (KHz)	Data Rate (Bits/sec)
Vermont Lunar	437.305	12	9600
KySat-2	437.405	12	9600
GOMX-1	437.250	5	4800
SwissCube	437.505	4	1200
CP5	437.405	4	1200


Link Budgets

Uplink Link Budget		
UHF Frequency	MHz	437.485
Wavelength	m	0.69
Transmit Power	w	50
Propagation Range	Km	2294
Free Space Loss S/C Antenna Gain	dB dB	-152.48
GS Antenna Gain	dB	15.00
Noise Power	w	2.43E-16
Power Received	w	8.93E-13
s/N	dB	35.66
Demodulation Margin	dB	10.00
Cross-Polarization Loss	dB	3.00
S/N Margin	dB	22.66


Downlink Link Budget		
UHF Frequency	MHz	437.485
Wavelength	m	0.69
Transmit Power	w	1.41
Propagation Range	Km	2294
Free Space Loss	dB	-152.48
S/C Antenna Gain	dB	0.00
GS Antenna Gain	dB	15.00
Noise Power	w	5.96E-17
Power Received	w	2.52E-14
S/N	dB	26.26
Demodulation		
Margin	dB	10.00
Cross-Polarization Loss	dB	3.00
S/N Margin	dB	13.26

Setup

Radios

Ground Station radio: ICOM IC-910H

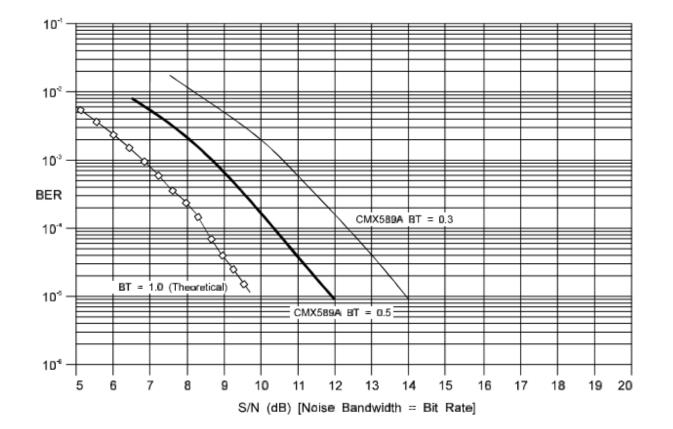
CXBN-2's radio: Astrodev Lithium-1

The Li-1 was place in an RF isolation box to protect it from outside RF interference

Terminal Node Controller (TNC)

Ground Station uses a Kantronics 9612+

Modified the Kantronics to transmit continuously


A level converter was used to increase the current off the modem

Modem Performance

Digital Transmission Analyzer

Requires a continuous stream

Needs 5V to read the signal

Compares the clock and data lines of the Kantronics and the Li-1 to calculate the BER

Step Attenuators

Used to simulate the free space as the satellite travels over head

Consists of two banks

- \circ 0 110dB in steps of 10dB
- \circ 0 11dB in steps of 1dB

Filter

Passband Cavity Filter covers 420 – 450MHz

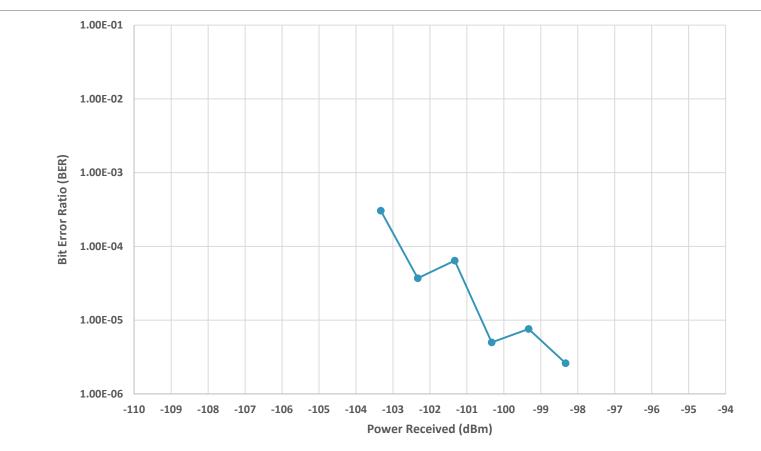
Serves as the antenna in the simulation

Noise Source

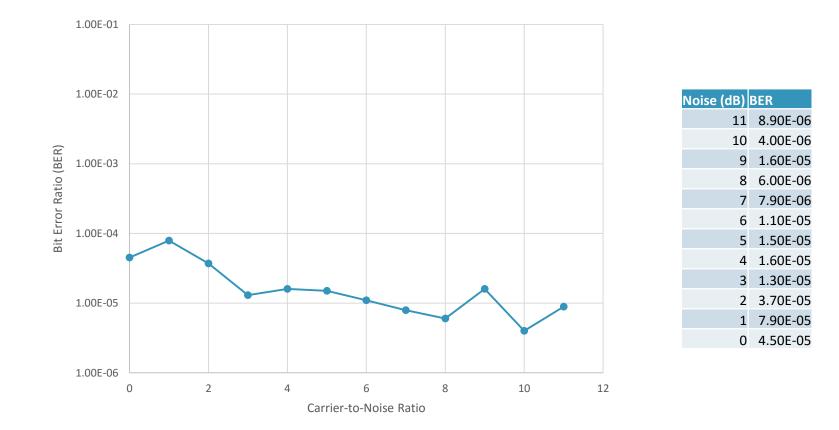
Broadband noise generator

Built in attenuator

Without Noise


Step Attenuator Value (dB)	Power Received (dB)	Bit Error Ratio (BER)
-80	-98.33	2.60E-06
-81	-99.33	7.60E-06
-82	-100.33	5.00E-06
-83	-101.33	6.40E-05
-84	-102.33	3.70E-05
-85	-103.33	3.04E-04

Loss in Box	-29.67dB
Filter Loss	-0.61dB
Loss from Step Attenuators at 0dB	-0.51dB
Radio Output	12.46dBm
Total Line Loss	-18.33dB



Without Noise

With Noise

Future Work

Refine Noise injection

Setup refinement

Test out other TNCs

Questions?

