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* Transitioning to more advanced payloads requires higher data rates
than UHF with tapespring antenna can provide 4]

* Transmit power and cost/accessibility of high-gain ground stations are
usually the limiting factors in CubeSat RF data rate [°]

e Laser communication is more power-efficient than RF:

— Channel capacity C scales with wavelength A:
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— Lasercom is an attractive solution for future programs

* Ongoing compact lasercom work: Aerospace OCSD [15], Facebook [1€],
DLR [17], BridgeSat/Surrey, RUAG, MIT programs, & others
— Related technology: CHOMPTT [20]
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Comm for Advanced LEO CubeSats!'lii” §una
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* Figure assumes payloads are running continuously & downlink is not limited by number or
duration of passes
* High-power, high-data payloads drive need for CubeSat Lasercom
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Lasercom Pointing Challenges Vi
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Lasercom Power & Beamwidth Trade

° Key chaIIenge: pointing control Clements 2016
— Lasercom beamwidths test limits
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COTS for CubeSat Lasercom
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Transmitter electronics leverages telecom technology Space terminal pointing
Credit: Ryan Kingsbury [2] control enabled by COTS
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; 2 Credit: Kathleen Riesing

P

+23 dBm

FPGA Electrical Output  EDFA Filtered Optical Input EDFA Optical
- - - - 12 T T T - 12 - Out ut"

3.0

PPM-16 | 1o} , ER>33dB | |
5ns pulse. |

High ﬁdjlity
waveform
ASE<0.2 dB

251

2.0} 0.8} 0.8

154 0.6 0.6

0.4}

1.0+ 0.4}

0.5 0.2 0.2

0.0 0.0} 0.0

—0.5 I I I I | —0.2 I i i i i 0.2
- 2

Selected COTS tech architecture with
amplification using EDFA to enable low
cost (<$20k in parts cost) system scalable
to 100 Mbps

MIT Ground station uses

Amateur Telescope and laptop
Credit: Hyosang Yoon
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Uncertainty-based Link Analysis  IliT g
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Developing new link analysis approach to handle system uncertainties:

* COTS parts not yet qualified for space environment

* Traditional, worst-case link analysis is too conservative for risk-tolerant CubeSats
* Probabilistic modeling approach to lasercom link budgets helps to assess risks
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Uncertainty-based Link Analysis  IHii s
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- How to address uncertainties: Use global sensitivity analysis to identify
uncertainties with highest impact on Link Margin
* Global sensitivity analysis helps to visualize contributors to performance uncertainty

Pointing
Loss

Implementation
Loss

Tx Optics
Loss

Rx Optics
Loss

Clements 2016

Sobol Sensitivities
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NODE Overview
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* Nanosatellite Optical Downlink Experiment

* 10-100 Mbps downlink from LEO CubeSat w/ 1550 nm, 2.26 mrad beam
* <10 W consumed power for 0.2 W transmit power

* Leverages COTS parts for transmitter and receiver

Transmitter
- Electronics: Commercial telecom laser
components, PPM modulation
- Mechanical: 3D printed structure
- Pointing strategy: bus pointing (coarse pointing),
Fast steering mirror (fine pointing)
- Components in two submodules

Receiver
- OCTL and Amateur telescope
- Detector: COTS avalanche

photodiode
- Pointing and tracking: COTS
infrared camera + star tracker

Transmitter EDFA Transmitter
submodule optics submodule

CAD Credit: Derek Barnes
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NODE I&T Progress Update

, Photo credit: Clements
Prototyping: Aniceto, Barnes, Clark, Haughwout
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FSM & Transmitter Prototyping Functional Testing
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FLARE Mission Overview
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Freespace Lasercom and Radiation Experiment
Intersatellite laser communications with CubeSats
Two satellites, compact half-duplex transceiver system
MIT’s entry into the AFRL UNP-9 competition

* Pre-PDR
Fuel Tank 4 thrusters maintain
satellite crosslink
distance
EDFA outputs
1550 nm 1.2 W / .
Sparrow window

laser signal (Secondary Payload)

Sparrow [1®I module

Bus FPGA (Secondary Payload)

generates signal
for lasercom seed
laser & interprets
received signals

Power management
& batteries

. ADCS provides 3 axis
Lasercom transmit aperture )
(2.26 mrad beam) 8.5 cm lasercom attitude control
receive aperture

CAD Credit: Maxim Khatsenko
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KitCube Mission Overview

Program Objectives

Pointing solutions:
¢ Reaction wheels
e Two star trackers

MIT’s entry into the NASA CubeQuest Challenge
Design and build a 6U CubeSat that wins one of the 3 remaining spots on SLS EM-1.

Achieve lunar orbit (51.5 M)
Goal of winning the Best Burst Data Rate competition with a laser communications

downlink transmitter.
Also compete for largest aggregate data volume, and longevity.

Lasercom payload:
* 1550 nm 1.2 W transmitter

* 0.1 mrad beam
* Beacon receiver

CAD Credit: Maxim Khatsenko
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The Future of CubeSat Lasercom il Sur
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Upcoming Tech Demo Missions
(MIT examples; many others exist)

LEO downlink

MIT example: NODE :>
>50 Mbps with 0.2 W transmitter & 1 m

ground station
Other examples: Aerospace OCSD, CHOMPTT

LEO crosslink
MIT example: FLARE
>10 Mbps with 1.2 W transmitter

Lunar downlink :>
MIT example: KitCube

>1 Mbps with 1.2 W transmitter

4

Future Architectures

LEO downlink

% U payload & ground station network
would enable higher duty cycles of
advanced CubeSat payloads

LEO crosslink

Low-power crosslinks reduce latency of
downlinking payload data

Deep space

CubeSats could be used as probes on
interplanetary missions (ex. Starshot), with
the communication ability to relay findings
back to Earth
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Abstract Min smela
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"Laser Communications Downlink and Crosslink Designs for CubeSats”

Optical communication, or lasercom, can provide much higher link rates than an RF system with comparable energy
consumption. This is because optical signals can be directed more effectively towards the ground station. The main
engineering costs associated with these systems are the stringent pointing requirements that are levied on the laser
transmitter. Recent advances in CubeSat attitude determination and control systems (ADCS) are addressing these
|needs, and there have been several missions that have demonstrated three-axis stabilization — a key enabler for
asercom.

We discuss developments in laser communications capabilities for downlink and crosslink on 3U and 6U nanosatellite
platforms and ground stations based largely on commercially available components. We present predicted and
prototyped capabilities of spacecraft transmitters and receivers for a power-constrained 1550 nm direct-detection
system with average output power ranging from 200 mW to 1.2 W for three case studies: low-Earth orbit downlink,
low-Earth orbit crosslink, and deep space downlink. We describe expected performance for a representative orbital
configurations, including consideration of propulsion and pointing capability, as well as ground station geometries for
these case studies. Passive and active beacon approaches are also considered. The case studies capture ongoing work
at MIT on the Nanosatellite Optical Downlink Experiment (NODE), the MIT KitCube entry in the NASA CubeQuest Lunar
Derby Challenge, and the Free-space Lasercom and Radiation Experiment (FLARE) in the University Nanosatellite
Program 9.

Lasercom has the potential to unlock large amounts of bandwidth at optical wavelengths even for resource-constrained
CubeSat platforms. The highly directed nature of the optical links make them extremely difficult to intercept and jam
resistant. These same link parameters also support extensive spatial reuse of carrier frequencies. We use onboard
memory storage to address weather/availability concerns for using optical transceivers for ground uplink and downlink.
Many missions do not have “real-time” downlink latency requirements, so data can be stored onboard until a ground
station is available. Applications with more stringent latency requirements can field additional geographically diverse
ground stations, particularly if the ground stations are compact and low-cost.
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