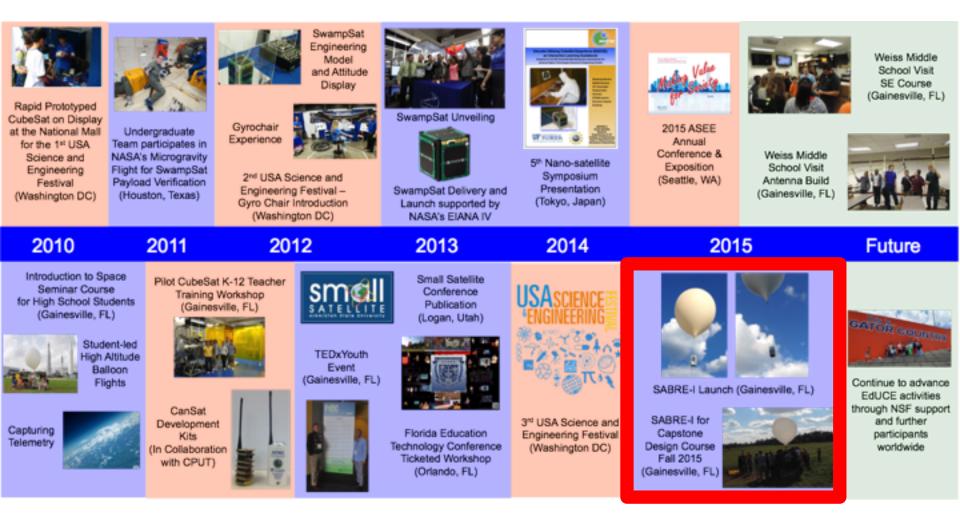


SABRE-I: An End-to-End Hands-On CubeSat Experience for the Educate Utilizing CubeSat Experience Program

Bungo Shiotani

Space Systems Group Dept. of Mechanical & Aerospace Engineering University of Florida


April 21, 2016

13th Annual CubeSat Developer's Workshop

EdUCE Program and Highlights

The mission is to provide end-to-end hands-on experience through on-orbit/inflight image and video capturing over Gainesville, FL on a CubeSat-class system

Need Requirement ts Desig n Devel opme n and validation and supp Retirement ts Retirement ts n and supp Retirement

<u>Objective</u>

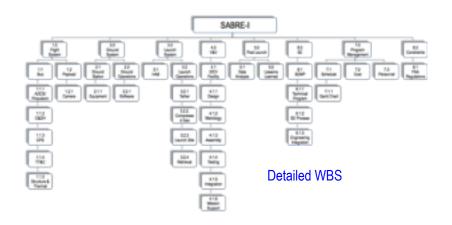
- Need: To understand and learn the end-to-end process
- Approach: utilize SABRE-I to emulate an end-to-end space mission (i.e., conceptualize, design, fabricate, operate, and decommission)

<u>Constraints</u>

Programmatic

- Cost: \$2,000
- Schedule: Complete within 1 year
- Mission definition
- Mission objectives
 - Primary
 - Secondary

Technical

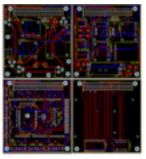

- Spacecraft: 3U-class or smaller
- Flight: Fly on high altitude balloon
- CONOPS
- WBS
- Tasks and responsibilities

- Understand regulations
 - FAA regulation, U.S. CFR 14 Part 101 (MOORED BALLOONS, KITES, AMATEUR ROCKETS AND UNMANNED FREE BALLOONS)

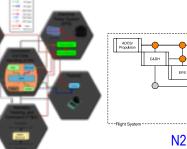
 Developed requirements verification matrix for traceability Requirements flowdown and allocation
 Detailed WBS

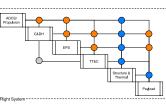
Number	Requirement	Verification Method					Verification Artifact	Status
Number	Requirement		0	D	TR		vernication Artifact	Status
1.1.3	EPS Subsystem							
1.1.3.1	The EPS subsystem shall include a rechargeable battery to provide sufficient power to all peripherals on SABRE-I			x		x	Design and Reference Document	
1.1.3.2	The EPS subsystem shall include a power distribution module that will deliver power to all peripherals on SABRE-I			x		x	Design and Reference Document	
1.1.3.3	The EPS subsystem shall include a power generation module to charge batteries			х		x	Design and Reference Document	

Requirements verification matrix

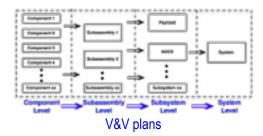


	Volume	Mass	Power	Link	Altitude	Cost	Schedule
Initial budgets	3U-class	4 kg	TBD	TBD	152.4 m (500 ft.)	\$ 2,000	< 1 year


- Performed trade studies on components
- Determined interfaces between all components
- Designed custom PCBs and structures
- Developed V&V plans


Cameras	Option 1			Option 2				
Objective	Weighting Factor	Parameter	Mag.	Score	Value	Mag.	Score	Value
Price	0.10	\$	69.99	7.0	0.7	49.04	10	1.0
Interface	0.40	Quality	Great	10	4.0	Poor	2	0.8
Compatibility	0.30	Quality	Great	10	3.0	Poor	2	0.6
Max Resolution	0.10	Pixels	1920000	10	1.0	307200	5	0.5
Min Resolution	0.10	Pixels	19200	8	0.8	19200	8	0.8
Overall value					4.7			1.8

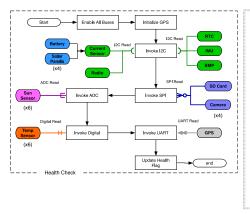
Trade study

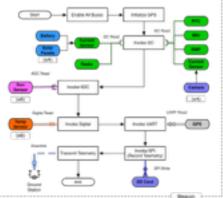

Custom PCBs

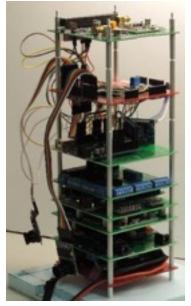
N2 diagram

System architecture

6


13th Annual CubeSat Developer's Workshop



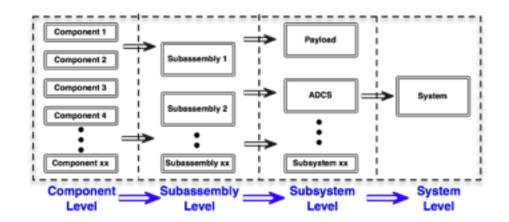

Developed:

- PCB stack
- Structure (8020) & panels
- Flight software

Flight software

PCB stack

Custom panels



Performed V&V tasks according to the plan developed earlier

During V&V, completed final budgets (mass, power, cost, and link) and requirements verification matrix

Ma	ass	1755.56 g	Power	< 2.5 W	Cost	\$1,428.92
Volu	Jme	120x120x300 mm (3U-class)	Link	> 500 ft	Schedule	1.5 months

April 21, 2016

First iteration to second iteration

- Power on/off by connecting/disconnecting battery
- Camera has internal level shifter so no flight daughter board needed
- Optimize PCB stack design

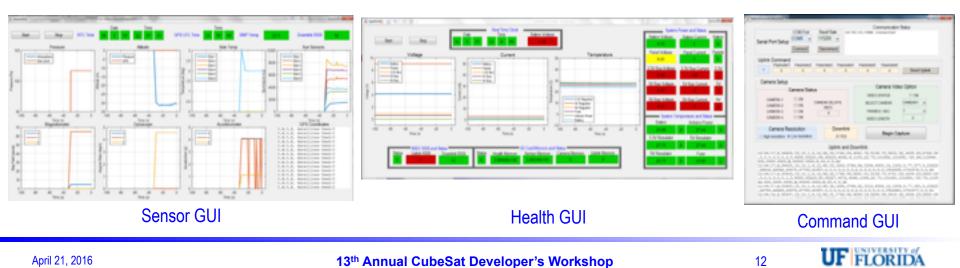
Second iteration to third iteration

- Isolate voltage bus circuits
- Access ports on the panels are limited, thus, the RBF and charging ports were moved on the stack
- Optimize PCB stack design

Design iteration summary

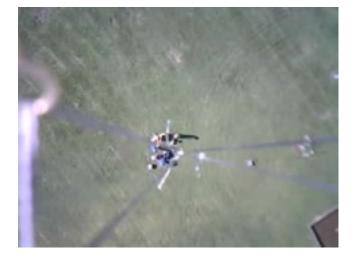
Design 1	Design 2	Design 3
 Design Development V&V Test launch 	DesignDevelopmentV&V	DesignDevelopmentV&VLaunch

SABRE-I Specifications

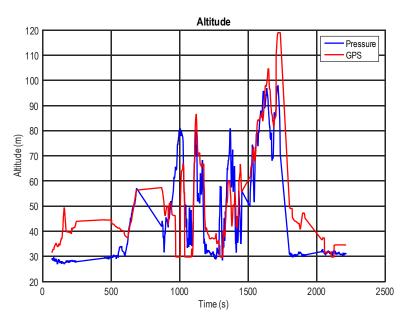

Mass	2215.82 g	Cost	< \$1500
Power	~2 W (orbit average power)	Payload	4 cameras 4 camera temp sensors
Dimensions	3U CubeSat-class (12 x 12 x 32.5 cm)		Arduino DUE MicroSD card data storage RTC
TT&C	Xbee Pro 900 with duck antenna	CDH	5 current sensors 6 internal temp sensors 6 external temp sensors Pressure sensor with temp sensor
	Solar cells on four sides		3-axis magnetometer 3-axis gyroscope
EPS	3.7V 10Ah Li-Po battery	ADS	3-axis accelerometer GPS receiver 6 Sun sensors
	3.3V, 5V, and 9V voltage buses (typical CubeSat voltages)	Structure	Custom side panels 80-20 structural frames
Launch	Balloon Tethers	Ground Support	Xbee Pro 900 with duck antenna Matlab GUIs

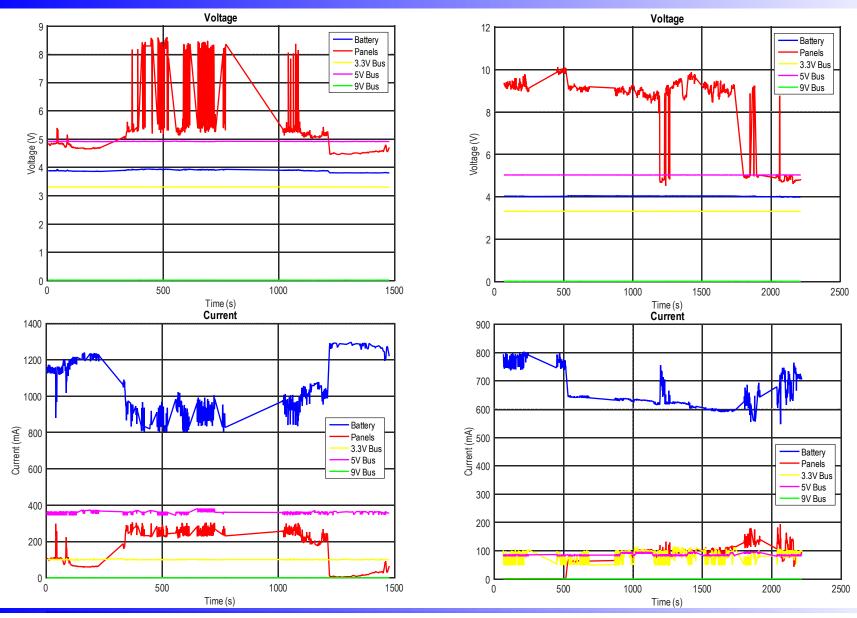
- Launched on a tethered balloon
- Flight Operations
 - Used set of uplink commands
 - Used GUIs to monitor real-time downlink

First Launch November 6, 2015



In-Flight Camera Data




- Post-processed downlinked data
- Documented lessons learned

Flight Data: Voltages and Currents

April 21, 2016

13th Annual CubeSat Developer's Workshop

17

UF FLORIDA

Lessons Learned

Flight system

- Consider alternative payload and communication systems
- Use server to host code for multi-person coding
- Need alternative connectors on stack
- Use of CAD software and rapid prototyping to verify design
- Product verification after acquisition

Ground system

Improve ground system (mainly software)

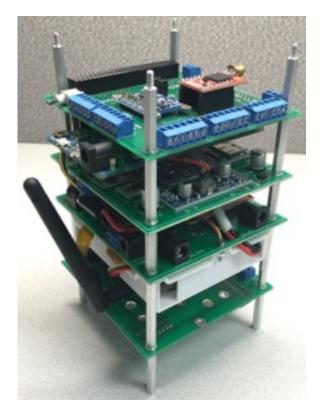
Launch system

- Written set of launch procedures
- Vital to check weather conditions prior to launch
- Improve on tether system

Lessons Learned

Comments

- Provides exposure to an end-to-end process
- Provides experience and knowledge for other projects and research
- Satisfied but wanted more experience with hardware and structure
- There are costs associated with shipping, taxes, etc.
- SABRE-I was utilized in a Capstone Design Course for college seniors in Fall 2015. All teams succeeded in obtaining flight data and gained valuable hands-on experiences.
- Elements of SABRE-I has been utilized to teach middle school students from The Weiss School (Palm Beach Gardens, FL).





Thank you!

Contacts: Bungo Shiotani (bshiota@ufl.edu) Norman Fitz-Coy (nfc@ufl.edu)

