

Integrity ★ Service ★ Excellence

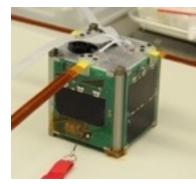
Applications of Small Satellites

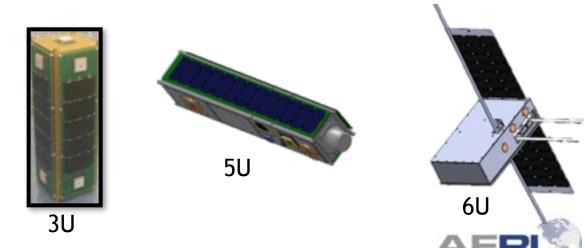
21 April 2016

David Voss, PhD Space Vehicles Directorate Air Force Research Laboratory

Outline

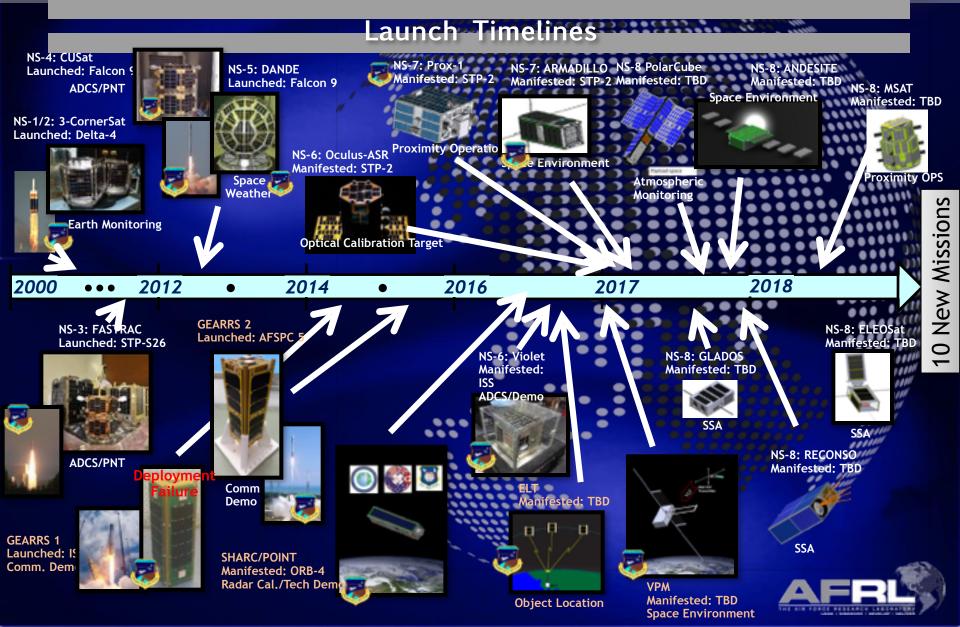
- Overview
- Small Satellite Applications for S&T
- Small Satellite Applications for Operational Use
- Small Satellite Applications for Workforce Development
- Limitation of Small Satellites
- Summary




- Objective 1: Determine how small satellites can meet Air Force objectives (1kg-50kg)
- Objective 2: Workforce Development

Objectives will be met through:

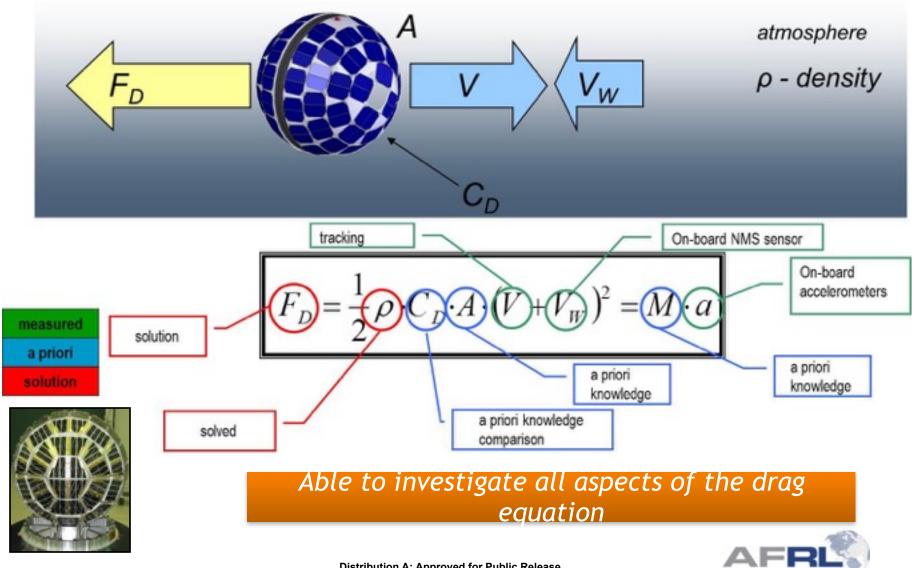
- researched performed at AFRL
- partnerships between AFRL and other government labs, industry, and academia
- At 2+ small satellites per year


1U (10cm x 10cm)

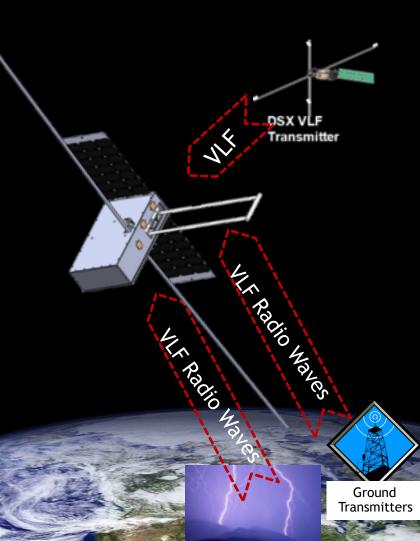
AIR FORCE RESEARCH LABORATORY SMALL SATELLITE PORTFOLIO

Small Satellite Applications: Science and Technology

- Small satellites excel at examining a particular, well-defined, science investigation (*Case Study 1*)
- Small Satellites can meet the need for multiple, in-situ measurements (global scale) needed for many space weather models (*Case Study 2*)


Case Study 1: DANDE		
Mission	Investigate atmospheric drag	
Method	Spherical sat. with accels. and a neutral mass spectr.	
Mass	43 kg	
Case Study 2: VPM		
Mission	Multipoint VLF wave and particle measurements	
Method	6U CubeSat with particle detector payload	
Mass	8 kg	
School	AFRL	

Case Study 1: DANDE



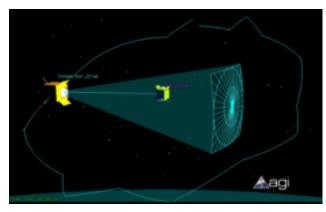
Case Study 2: Very low frequency Particle Mapper (VPM)

- Critical augmentation for the AFRL Demonstration and Science Experiment (DSX) satellite
- Answers key DSX physics: Can we transmit VLF across the space plasma sheath into the far-field.
- Sensors to observe precipitating energetic particles induced by DSX
- Launch through DoD Space Test
 Program
- STATUS: 2017 Launch

Lightning

- Small Satellites provide a low-cost testbed for evaluating new algorithms (*Case Study 3*)
- Small Satellites provide opportunities for risk reduction of components for high value programs (*Case Study 4*)
- •Small Satellites enable future missions

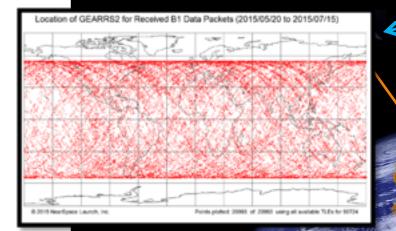
Case Study 3: Mr & Mrs Sat (MSAT)		
Mission	Circumnavigation of RSO	
Method	Two small sats one with stereoscopic imager for prox-ops	
Mass	~50 kg	
School	Missouri S&T	
Case Study 4: GEARRS		
Mission	Demonstrate Commercial C2	
Method	3U CubeSat with Globalstar radios	
Mass	3.9 kg	
School	AFRL	



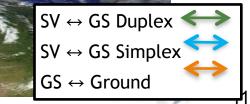
Case Study 3: Mr. & Mrs. Sat (MSAT)

- Visual Based proximity operations to autonomously circumnavigate an RSO (Mrs. Sat)
- Investigating stereo imaging
- Investigate 3D reconstruction of objectives

Allow research for on-orbit validation of next generation Prox-OPS


10

Case Study 4: Globalstar Experiment and Risk Reduction Satellite



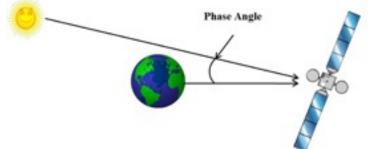
- Challenge: Can we use commercial
 comm to operate AF spacecraft?
 Potential lower cost than current AFSCN
 60% global coverage for duplex
- Experiment: Characterize the Globalstar network for LEO spacecraft comm for both the Duplex and Simplex radios
- Mission definition to delivery in 94 days!
- Status: Full Mission Achieved, 2015

Small Satellite Applications: Operational Use

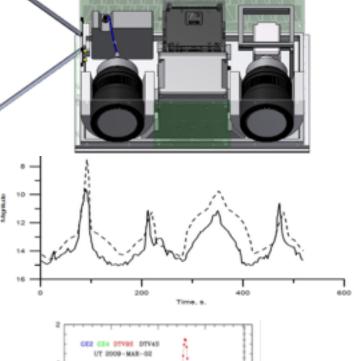
- Small Satellites can offload some of the work from operational high value assets allowing them to be allocated to critical areas of interest (*Case Study 5*)
- Small Satellites can perform routine missions for operational customers (*Case Study 6*)

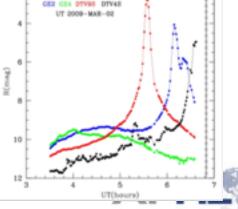
Note: Operational applications is not a goal of the University Nanosat Program or the Small Satellite Portfolio

Case Study 5: GLADOS		
Mission	Investigate RSO characteristics via glint and spectroscopic analysis	
Method	6U with imager and spectrometer	
Mass	9 kg	
School	University at Buffalo	
Case Study 6: SHARC		
Mission	Provide radar calibration for ground based radars	
Method	5U Cubesat with transponder and GPS	
Mass	5 kg	
School	AFRL	



Case Study 5: GLADOS

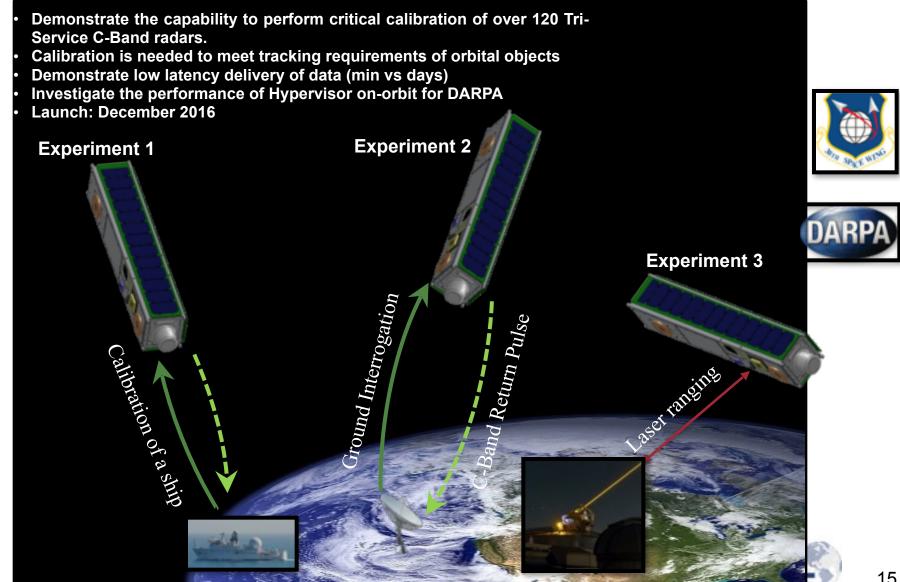

- Operational augmentation
- Utilize multi-band photometric data of glinting space objects to identify their type, surface materials, and orientation
- GLADOS would allow for missions such as the Space Based Surveillance System (SBSS) to be dedicated to primary areas of interest



Low-cost missions such as GLADOS move us towards a persistent space based capability

Note: not actually operational

Distribution A: Approved for Public Release



Case Study 6: Satellite for High Accuracy Radar Calibration

Small Satellite Applications: Workforce Development

Small Satellites and Workforce Development

- Small Satellite development efforts are a microcosm for large acquisition programs (still have BAA, hardware development, delivery, on-orbit operations)
- Small Satellites typically have
 - Shorter development lifetimes
 - Reduced set of requirements
 - Shorter lifetimes
- They provide an excellent opportunity for understanding the interrelated nature of requirements and how to trade them at the system level
- Programs are excellent for junior workforce development (both at the University level and the professional level)

The University Nanosatellite Program

University Nanosat Program

- Multi-year program to design, build, and fly a small satellite
- Program has been around for 15 years
- UNP provides an extremely high fidelity concept study to military relevant missions
- Over 32 small satellite (50kg and down) missions have been investigated through the program

Roles and Responsibilities

- AFOSR: Funds \$55k per year up to four years
- AFRL Space Vehicles:
 - Executes program (regular design reviews with each school)
 - Performs Environmental Stress Screening
 - Works with the Space Test Program for launch integration
- SMC/Space Test Program: Launch

Primary Objective: Education

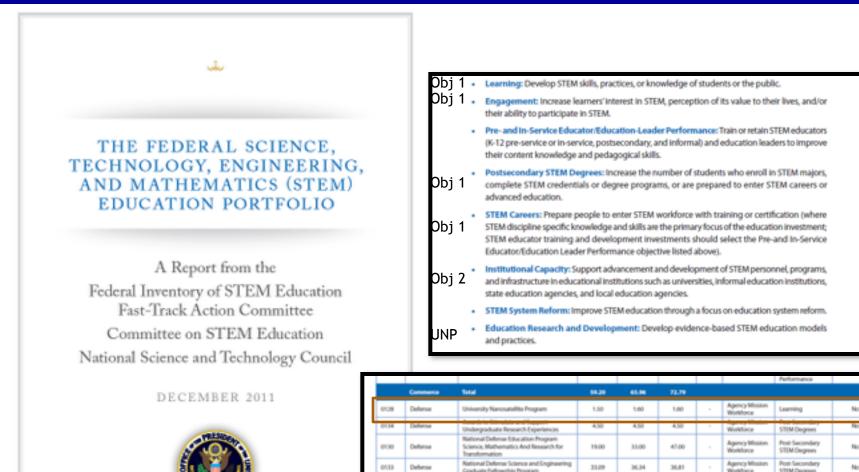
- Systems engineering training
- Workforce development
- · Foundation for all UNP decisions

Secondary Objective: Technology

- · Innovative, low cost technology development
- · Motivation for Gov. and industry sponsors
- DoD relevant

Tertiary Objective: University Development

- Develop space hardware laboratories
- Support university PI's



Federally Recognized Supporting National STEM initiatives

UNP is recognized as a STEM program in the President's STEM educational portfolio

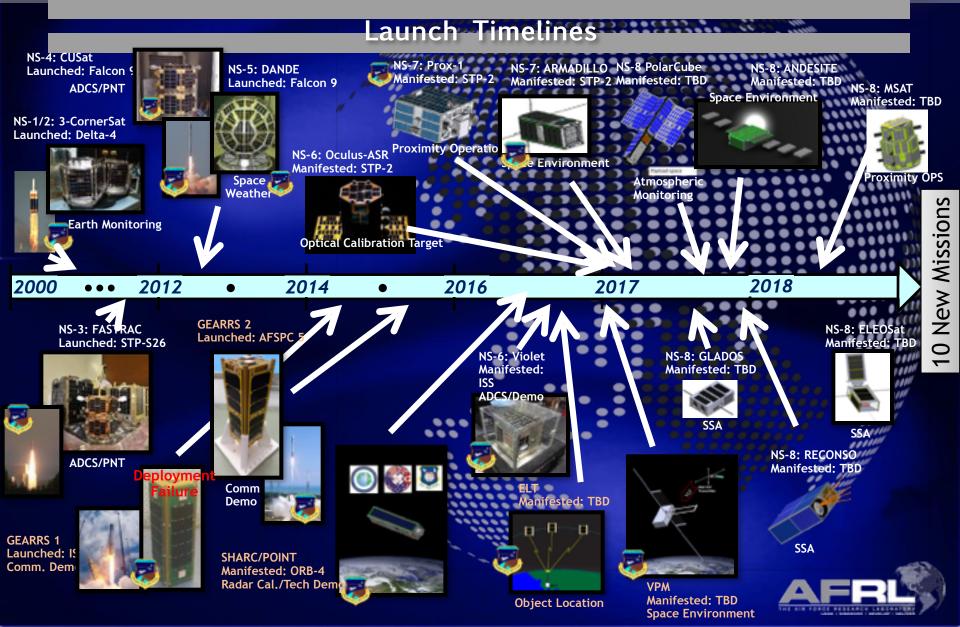
Small Satellite: Limitations

Distribution A: Approved for Public Release

Common Poor Approaches to Small Satellite Missions

- People attempt to cram a 500kg mission into a 50kg bus
 - Small satellite missions must be well scoped for the capability of the platform
- People assume just because it's small it's easy
 - Small satellites (especially Cubesats) are highly integrated systems
 - There are many interdependencies between systems
- People attempt to leverage big space approaches to small satellites
 - Small Satellites allow for new paradigms for acquisition, on-orbit operations and mission assurance

Conclusion


- Small Satellites can play a big part in meeting the needs of the Air Force S&T efforts
- Small Satellites can play a large role in helping to train the workforce to better manage large acquisition programs
 - We need individuals who are passionate about what they do
 - Universities are the perfect place to experiment with high-risk, novel missions
 - Universities have the freedom to approach problems in an untraditional way enabling new science, and new programmatic paradigms

AIR FORCE RESEARCH LABORATORY SMALL SATELLITE PORTFOLIO

24

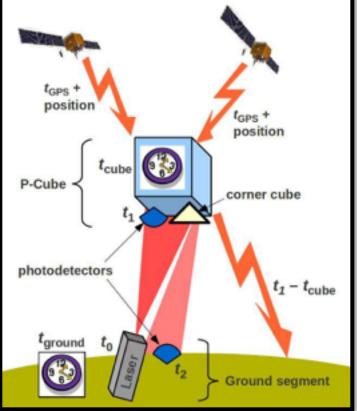
Small Satellite: Back Ups

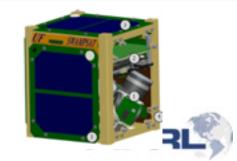
Distribution A: Approved for Public Release

Technology Demonstrations

- Small Satellites provide a low-cost testbed for evaluating new algorithms (*Case Study 3*)
- Small Satellites provide opportunities for risk reduction of components for high value programs (*Case Study 4*)
- •Small Satellites enable future missions (*Case Study 5*)

	¥	
Case Study 3: M.Sat		
Mission	Circumnavigation of RSO	
Method	Two small sats one with stereoscopic imager for prox-ops	
Mass	~50 kg	
School	Missouri S&T	
Case Study 4: GEARRS		
Mission	Demonstrate Commercial C2	
Method	3U CubeSat with Globalstar radios	
Mass	3.9 kg	
School	AFRL	
Case Study 5: P-Cube		
Mission	Demonstrate Precision Timing between ground and CubeSats	
Method	1U flying atomic clock, corner cube	
Mass	2 kg	
School	University of Florida	




Case Study 5: P-Cube

- Precision Time Transfer with CubeSats
- Enable high accuracy timing between CubeSats and the ground
- Flying Symmetricom's Chip Scale Atomic Clock
- Use laser pulses and a corner cube to determine timing difference between the CubeSat and the ground (frequency stability on the order of ~1.5x10⁻¹⁰)
- Formerly developed by the University of Florida in the NS-8 competition

Enabling technology for disaggregated architectures

Limitations of Small Satellites

- Power
 - Limitation: Typically are sub-50W with many missions sub-10W
 - Workaround: Duty Cycle payloads
- Communications
 - Limitation: Typically low baud rate communication systems
 - Workaround: Creative CONOPS or large dish on the ground
- Multiple measurements
 - Limitation: Due to the low power, reduced volume this restricts the number of payloads a small satellite can fly
 - Workaround: Reduced size of payloads where appropriate
- Environments
 - Limitation: Very rough random vibration environments which we typically do not know at the outset of the program
 - Approach: Use GEVS model and over design (where appropriate)

- U.S. Space Policy (NSPD 49): "... implement activities to *develop* and maintain highly skilled, experienced, and motivated space professionals within their workforce."
- Rising above the Gathering Storm, Revisited (2010): "In 2000 the number of foreign students studying the physical sciences and engineering in United States graduate schools for the first time surpassed the number of United States students."
- Preparing the next generation of STEM Innovators (NSF, 2010): "The identification and development of our Nation's human capital are vital to creating new jobs, improving our quality of life, and maintaining our position as a global leader in S&T."

- Small Satellites can play a big part in meeting the needs of the Air Force S&T efforts
- The technology is currently available for tackling many of the space challenges
- Small Satellites can play a large role in helping to train the workforce to better manage large acquisition programs
- We need individuals who are passionate about what they do
- Universities are the perfect place to experiment with high-risk, novel missions
- Universities have the freedom to approach problems in an untraditional way enabling new science, and new programmatic paradigms

