DustCube

2016 CubeSat Developers' Workshop Cal Poly

MICOI

(04/21/2016)

UniversidadeVigo

Engineering for Remote Sensing

A 3U Cubesat to Characterize the natural dust environment and microscopic ejecta due to DART high speed impact on the Binary asteroid 65803 Didymos.

Franco Pérez franco.perez@humsat.org Ricardo Tubío ricardo.tubio@humsat.org

Antón Vázquez anton.vazquez@humsat.org

Alberto González alberto.gonzalez@humsat.org Fernando Aguado fernando.aguado@humsat.org

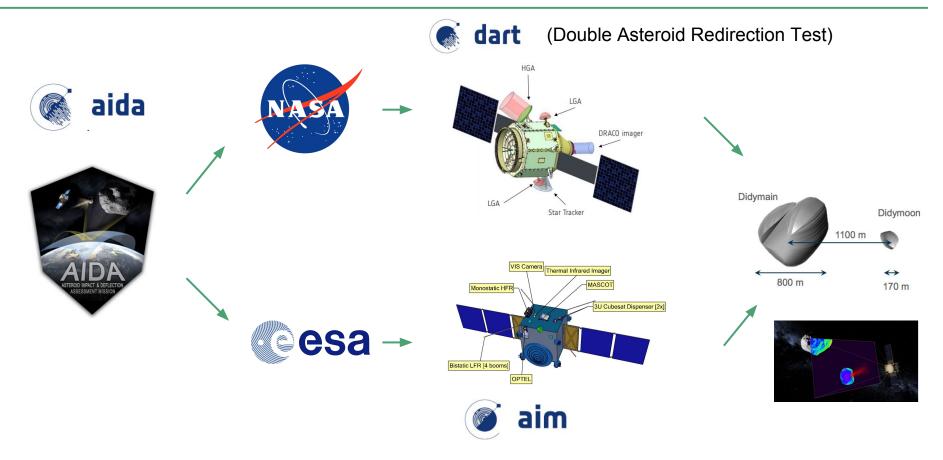
Diego Nodar diego.nodar@humsat.org

University of Vigo

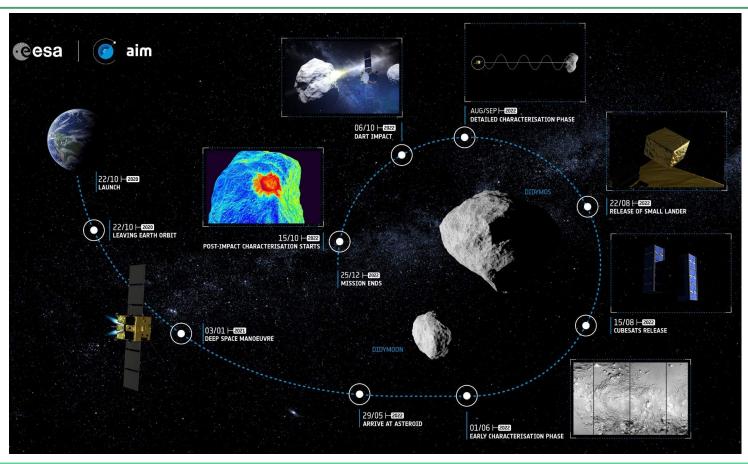
Pablo Tortora paolo.tortora@unibo.it

Dario Modenini dario.modenini@unibo.it

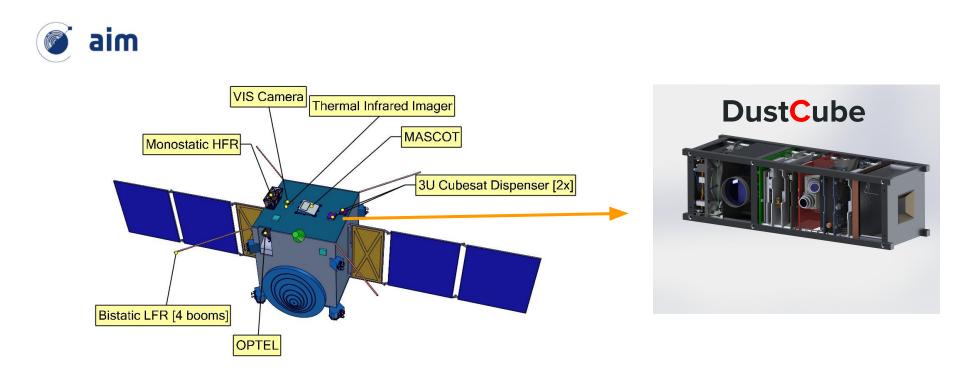
University of Bologna


Gergely Dolgos gergely.dolgos@micos.ch

Micos Engineering

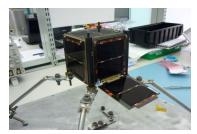


AIDA Mission

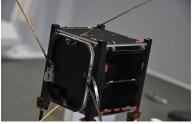

AIDA Mission (Asteroid Impact and deflection assessment)

AIM CONOPS (Concept of Operations)

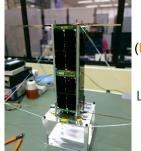
AIM (Asteroid Impact Mission)


DustCube TEAM

DustCube Project Consortium


DustCube Project Consortium (1 / 3) Universida_{de}Vigo

• UVIGO CubeSats Experience in 8 years: 3 CubeSats launched and operated until 2016



Xatcobeo: 1U (Operated for 2.5 years, Launched on (13/02/2012) Re-Entered on 01/09/2014) Launched with ESA Vega

• On-going developments:

HUMSAT-D: 1U (Operated for 1.2 years, OPS Finalized on 02/2015) Launched with Dnepr/GAUSS 11/2013

SERPENS: 3U (Mission finalized on April 1, 2016 Re-Entered) Launched with JAXA, through the ISS 19/08/2015

FemtoXat ¹/₃ U (Modular Cubesat)

HumSat2.0 Payload: Second Generation SDR payload for HUMSAT. (End of 2016)

SatNet: Open Source Ground station network (Final testing. Operative on 03/2016)

ESA ESEO Satellite - Ground Station Node

- Pontevedra Smart City Sensors
 Network deployment.
- Development of Highly adaptable EGSE tools for SC Testing
- Developments of CubeSats Telemetry analysis tools

DustCube Project Consortium (2 / 3)

University of Bologna

ALMASat (ALma MAter Satellite)

Demonstrator, successfully launched on February 13th, 2012

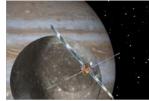
ESEO satellite

GPS Receiver and OD, as part of the payload package (in collaboration with SITAEL) Ground Stations design.

• Target research areas:

Micropropulsion systems Cold-gas, flown on ALMASat-1 in 2012 Monopropellant warm-gas, under development GPS Receivers and Autonomous Navigation Systems Ground Segment/Station Technologies and Mission Control Centers AODCS simulation tools

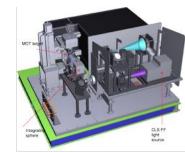
RadioScience Experiments


- Juno (NASA),
- Cassini-huygens (NASA/ESA/ASI)
- Juice (ESA)
- Bepi-Colombo (ESA)

Micos Engineering GmbH Company competences and SysNova team

- Operational since April 2011 (<u>www.micos.ch</u>)
- Hosted by Empa (Swiss Materials Science Federal laboratory) incubator
- Focus on system engineering for opto-mechanical systems
- Independently owned (100% by 5 shareholders)
- 20 employees (16 engineers/physicists, 6 PhDs)
- Clean room (15m² ISO7, 45m² ISO6, 9m² ISO5), ESD lab, TVAC procured
- E.g. instrumentation for Sentinels (S4: AIT-OGSE, S5: Calibration Subsystem), COM-Blackbodies, Proba-3: High Accuracy Metrology Optical Head Unit, and technology developments such as Optical Encoders

Micos Competencies:


- System Engineering
- Optical Engineering
- Mechanical Engineering
- Algorithms, Processing and SW
- AIT
- PA/QA

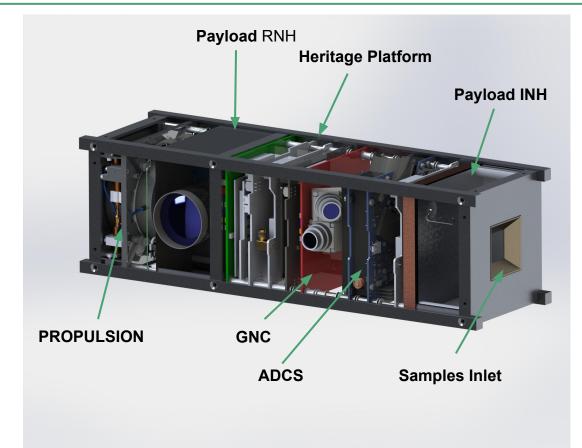
Engineering for Remote Sensing

5R)

So 900

DustCube S/C

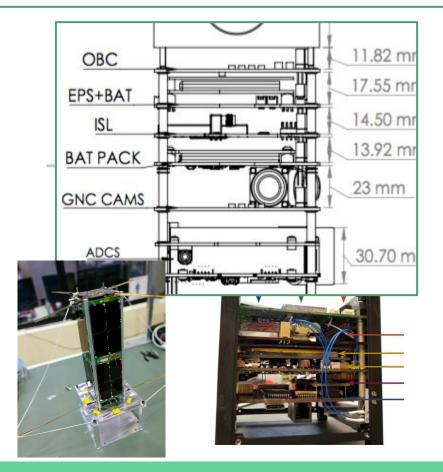
It is a **CubeSat for deep space exploration** which main technical and scientific objectives are:


Technical:

- **Test an Intersatellite-link** (network of 2 cubesats + lander + AIM mother S/C) in deep space.
- Deploy a cubesat on an asteroid vicinity.
- **Test laser altimetry** on a miniaturized system onboard a Cubesat.

Scientific:

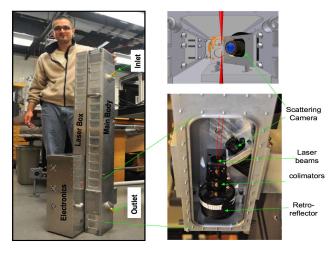
- Characterize (shape, size, speed, refractive index,etc) the asteroid particles environment:
 - Natural environment Dust
 - Vicinity, L4/L5
 - Characterization of the asteroid ejecta plume due to DART Impact
 - Plume cloud physical properties (composition, size, shape, distribution)
 - Plume evolution after impact
 - Surface regolith characterization
- Imaging of the Didymoon
 - Before Impact
 - During Impact
 - After Impact

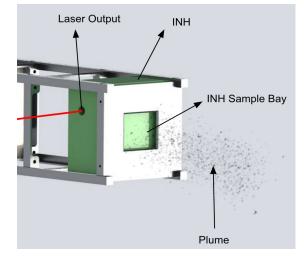

S/C Configuration

1 x 3U CubeSat

- Optical Navigation
 - (TIR Cameras)
- Cold Gas Propulsion
 - Multiple Thrusters configuration
- ADCS (3-axis pointing)
 - Reaction wheels
 - Start-trackers
 - $\circ \quad \text{Sun-sensors}$
- Payloads
 - INH (In-Situ Nephelometer)
 - RNH (Remote Nephelometer)
- Two deployable solar panels
 - Estimated power generation of 15W

Proposed flight-proven Platform for DustCube

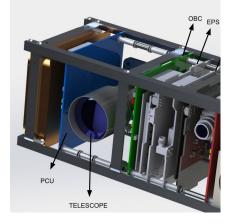

- System Reliability:
 - > 4 Years in Orbit, more than 100.000 EXECUTED COMMANDS
 - Inhouse subsystems development + COTS
 - Critical components = RAD-HARD
 - Inhouse OBSW: On Board SW
 - FDIR implementation (Failure detection, isolation and recovery)
 - High level of autonomy
 - High modularity for new payloads

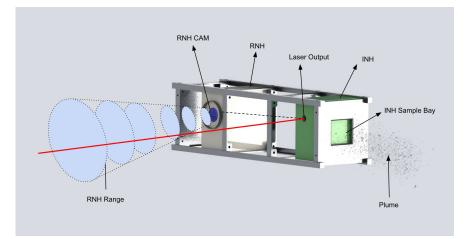

• 40 different Telemetries

- 84 Telecommands direct and scheduler programming
- Exhaustive system engineering effort and AIT:
 - TLYF (Test Like you Fly)
 - E2E
 - EMC Testing
 - ECCS Tailored Methodology for CubeSats developments
- LOW COST! (Lowering the cost, without compromising reliability)
- GSSW (Ground Segment Software) based on ESA PUS (Packet Utilization Standard)

(INH) In-situ Nephelometer

• INH: In situ NepHelometer is a miniature design of the PI-Neph (NASA airborne missions)

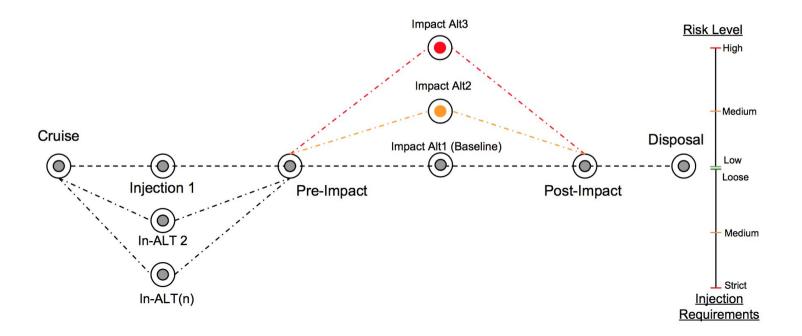



Polarized Imaging Nephelometer Development and Applications on Aircraft, Dissertation, Dolgos, G., 298 pages, 2014

- The particles are deposited in the INH Sample Bay
 - Trapped on a charged surface
- The laser beam passes in front of the camera twice while, the camera takes samples of the impact of the laser with the particles,
 - On the first pass, the forward **scattered light** reaches the camera on a family of scattering angles
 - On the second pass the **backscattered light** reaches the camera in the complementary scattering angle range.
- The laser beam reaches the output of the SC to execute remote measurements of particles.
- Ongoing instrument miniaturization for a 1U CubeSat volume equivalent, based on Micos heritage, is being performed.

RNH Design (Remote Nephelometer)

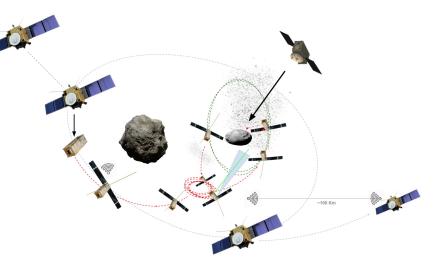
- RNH: Instrument enhancement for remote sensing
 - Scattering data from remote particles



• Technology validation of an altimetry laser (TOF) system used for both surface recognition and navigation.

DustCube CONOPS

Concept of operations


- Set of alternatives for INJECTION Phase, based on injection complexity (Backed-up with numerical models)
- Set of alternatives for IMPACT Phase, based on probability to be impacted by ejected plume, and navigation complexity (Backed-up with Orbital and Environmental analysis)

DustCube SCIENCE

SCIENCE CONOPS and Objectives

COPINS Phase	Orbit Position	Duration	Payload Activities					
COPINS Deployment	Platform activities @Km	6 days	Commissioning					
	Orbit Manouvering (Parking orbit)	1 day	Didymos system imaging					
Pre-Impact	SCIENCE @L4/L5	21 days	 Natural dust environment characterization Particles counting Particles deposition Didymoon surface Imaging 					
DART Impact	SCIENCE @L4/L5	1 day	 Impact Imaging Plume concentration evolution Particles characterization PSD (Particles Size distribution) Particles speeds Shape Refractive Index 					
	SCIENCE @Rendezvous	(TBD) hrs	- Didymoon surface Imaging - Laser altimetry validation (TOF)					
	SCIENCE @DRO Low altitutde	24 days	 Particles charcaterization Sphericity BRDF PSD (Particles size distribution) Surface Imaging 					
Post-Impact	SCIENCE @L4/L5	~20 days	Extended Science objectives					

DustCube Conclusions

- International Consortium (Research institutions + Industry)
- Very valuable science return for the community (INH + RNH)
- Validation of technology for future missions with CubeSats (Laser altimetry)
- Reliable Technology (flight proven platform)
 - FDIR
 - Autonomy
 - 3 Launched and Operated CubeSats Missions
- Experience on autonomous navigation system, space optical payloads and autonomous OBSW
- Tailored ECSS Methodology on CubeSats developments
 - i.e PUS (Packet Utilization standard)

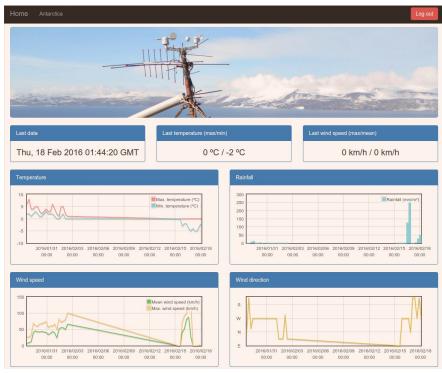
DustCube Project

Diego Nodar

DustCube Team - University of Vigo diego.nodar@humsat.org

SERPENS S/C Fresh Data

(Backup slides)


Fresh data from SERPENS Cubesat (Proposed Platform)

• Snap shot of SERPENS TM Viewer during S/C pass over Vigo (Thursday 18/02/2016)

	SERPENS O														
	Out of Limits & Old		rotocol T	otocol TC & TM Pass C		Pass Control				Station Manager					
			TM Mode	TC Manage	PAS	PASS MODE (AUTO)		TXpolarization control Mode fixedLHCP fixedLHCP Chang					Change		
28083			Reset Protocol	TM Viewe	r (Start pas			Reception) [rinedarire			
Executed	Limit (s) 300	C F	orce TC Mode	Hex. Conver	ter	End Pass				LHCI	RHCP	UNDEF		X packet	
Commands on								Pesquiaas e E	Correct	120	0	0	Thu Feb 18	3 12:03:41 GM	
	πc		овс		Solar Panel X		EPS		Wrong	0	0	0	LH	HCP	
scheduler		17 pkt	P_OBC_HUMPL_5V	0	P_EPS_X_V	3.81 V	P_EPS_B_V	8.1 V	Last frame	Davas	14100-D01/	4.02.00.00.0	0.00.00.00.	00:00:00:00:0	
(since 09/2015)	P_TTC_RXERR E P_TTC_BITCORR	3 pkt	P_OBC_HUMPL_3V3 P_OBC_TTC_3V3	0 511	P_EPS_+X_I P_EPS_+X_T	71.85 mA 10.46 °C	P_EPS_B_I P EPS B IDIR	0.03 mA	Last frame D4:10:41:00:B0:41:03:00:00:00:00:00:00:0						
	P_TTC_BITCORR		P OBC ANT	511	P_EPS_+X_I	10.46 °C	P EPS B T	1025 6.21 °C	TNC 1			TNC 2	TNC 2		
		131 okt	P OBC REF 1V5	460	P_EPSX_T	5.75 °C	P_EPS_3V3_I	0.16 mA	AVAILABLE						
		-106 dBm	P_OBC_REF_3V3	511	Solar Panel Y1	5.75 C	P_EPS_SV_I	0.02 mA							
		144 Hz			P_EPS_Y1_V	3.82 V	P EPS UNR I	-0.55 mA	Port			Port			
		812 mA			P_EPS_+Y1_I	407.06 mA	P_EPS_STATUS	476							
	P_TTC_BOOTCOUNT	7167 Rebo.	OBSW		P_EPS_+Y1_T	52.56 °C	P_TTC_BAT_V	8.33 V	Pol.		HCP 🔻	Pol.		RHCP 💌	
	P_TTC_T_PA S	305	P_OBSW_OPMODE	СОМ	P_EPSY1_I	31.95 mA			1				(in the second s	1	
	P_TTC_T_PCB 5	s °C	P_OBSW_LASTTC	78	P_EPSY1_T	-0.48 °C			R-S		🗹 R-S	R-S		📝 R-S	
			P_OBSW_IECLIPSE	6138	Solar Panel Y2				Random		📝 Rando	m Randor	VES	🛛 🖾 Random	
			P_OBSW_ERROR	0	P_EPS_Y2_V	3.88 V	HUMPL		Kandonn			in indiridior			
			P_OBSW_ERROR_SUB	-4052737	P_EPS_+Y2_I	393.56 mA	P_HUMPL_3V3_I		Viterbi		Viterb	i Viterbi		🔲 Viterbi	
			P_OBSW_SDUP	28083 SDU	P_EPSY2_I	19.89 mA	P_HUMPL_2V5_I P HUMPL T		- I		(Creater II)				
			P_OBSW_SDUE P_OBSW_RTC_SKEW	137 SDU -1 ticks	Temp. Z P_EPS_+Z_T	9.45 ℃	P_HUMPL_I P_HUMPL_OPMODE		Baud TX		1200	Baud T.	(1200	1200 💌	
			P OBSW RTC PWDWN	1417 ticks	P EPS -Z T	9.96 °C	P HUMPL ERROR		Baud RX		1200	Baud R	(1200	1200 🔻	
				THIT CLOS	1_010_ 2_1	5.50 C			Basalit						
	Time Manageme	ent							Test	Check	Sel	Test	Check	Set	
	Time Thu Feb 18 12:03:42 GMT 2016						Reset Station Reset TNCs								
	Offset	1'	1 s M	90.867768	595(Epoch	144	3706957580 UTC u	nits				Ab	out	Exit & Save	

- Downloaded Data in the communication pass:
 - Environmental data collected from HUMSAT sensors deployed in **ANTARCTICA + Chile + Spain**.
 - Payload measurements of Global VHF radio interference on the Amateur band to globally map the jamming sources.

Fresh data from SERPENS (Antarctica data and sensors)

Figurs. Data gathered from Antarctica sensors

Figure. Humsat sensor

Figure. Antarctica spanish base sensor location