

A 6U CubeSat for Lunar Orbit and Beyond

Presenter: Kathleen Morse, Ph.D. Founder of Yosemite Space, LLC and Member of Team Miles, Kathleen@yosemitespace.com

Team Miles POC: Wes Faler, Owner of Fluid & Reason, LLC and Team Lead for Miles, Wes@miles-space.com

Miles Mission and NASA Cube Quest

 NASA Cube Quest is a Centennial Challenge to build flight-qualified, 6U satellites capable of advanced communication and propulsion near and beyond the moon

- Miles to compete in Lunar Derby
- Team Miles accomplishments to date:
 - Won first position in ground tournament 1
 - Finished in top 5 in ground tournament 2
 - Miles qualifies as 1 of 6 teams eligible for EM1 launch
- EM1 launch scheduled for 2018

Summary of Miles Mission

Time	Action	
Os	Deployment from SLS	
>30s	CDH on, internal checks	
10 to 30 min.	Deploy solar panels, RF transmission remaining subsystems on	
>40 min.	Attitude Stabilization	
>1Hr.40min. to 8 days	Calculate and execute trans-lunar insertion plan	
60 days	Lunar Derby, NASA DSN confirms orbit	
> 60 days to 75 days	Calculate and execute storage orbit (Earth- Mars orbit)	
>75 days	Execute kill sequence and powers down.	

Mission autonomy enabled by:

- Customs mission s/w
- Open source trajectory prediction s/w
- RACP performance and reliability

Summary of Miles Bus

14 ConstantQ
Thrusters:
Iodine Plasma
propulsion
> 1.1mN/W
0.5U for 4 thrusters
Fluid & Reason, LLC

RACP:

hybrid platform scalable performance: 350MIPS at 0.8W 25k MIPS at 8.7W 9cm X 9cm size Yosemite Space, LLC

18 Li-ion batteries Orbtronics

Miles Spacecraft Specs		
Size	6U	
Initial Mass	14kg	
Available Power	30-35W	
Available Thrust	39.5mN	
Position Accuracy	1-10km	

Miles Design Mitigates Radiation Effects Solar Cycle FM1

- Screen electronics with ground based radiation testing
 - Catastrophic failures
 - TID radiation hardness (10X margin for mission)
- Shielding
- SEE detection and protection
- Redundancy
- Health Monitoring and Management system

Proton Testing- MGH VPT RAD

Miles Design Mitigates Space Charging Effects

- Faraday Cage
- Grounding controlled by thyristor that only conducts when voltage is above its set point.
- Leaky dielectric coatings prevent charge build-up on dielectric surfaces

ConstantQ Thruster

ConstantQ Thruster Properties	
Thrust	2.4mN (observed), 4-5mN (2016 Q2)
sp	>250s (observed)
Power	2.2W per thruster
ΔV	327m/s (1kg iodine propellant)
Dry Mass	39 grams
Volume	0.5U for 4 thruster system

POC: Wes Faler

Wes@miles-space.com

Prototype firing with Xenon

- Engine performance validated using a static thrust stand at 10^-6 Torr with Xenon.
- Propellant options include solid iodine, traditional ablated solid propellant, and noble gases.
- Custom tank and delivery systems are available.

Resilient Affordable Cubesat ProcessorRACP

- Multi-processor fault tolerant space computer that integrates current generation SoC
- Compatible with existing CubeSat products
- Designed for graceful degradation and minimal interruptions in processing
- Supports multiple sensor platforms
- Components screened through ground and spac radiation testing

"Other upcoming hybrid platforms share some of the same concepts, but the degree of adaptability and performance capabilities of RACP is superior."- NASA SBIR review

POC: Kathleen Morse Kathleen@yosemitespace.com

AEROCULTURE

Thank you

