Lunar Ice Cube Orbiter: Lunar Water Dynamics via a First Generation Deep Space CubeSat

P.E. Clark, CalTech/Jet Propulsion Laboratory, Science PI B. Malphrus, Morehead State University, PI NASA/GSFC Payload: D. Reuter, T. Hurford, R. MacDowall, N. Petro, W. Farrell, C. Brambora, D. Patel, S. Banks, P. Coulter NASA/GSFC Flight Dynamics: D. Folta, P. Calhoun Morehead State University Bus, Mission Ops, Ground Communication: B. Twiggs, Jeff Kruth, Kevin Brown, R. McNeill Busek: M. Tsay, V. Hruby Vermont Technical College: Carl Brandon, Peter Chapin

Jet Propulsion Laboratory

April 2016 California Instituc Cubesal Covernol Ogy 6 Clarketal Lunar Ice

National Aeron Admi

nd Space

Jet Expulsion Laboratory alitornia Institute of Technology Pasadena, California

www.nasa.gov

With JPL and non-JPL authors: © 2015. All rights reserved.

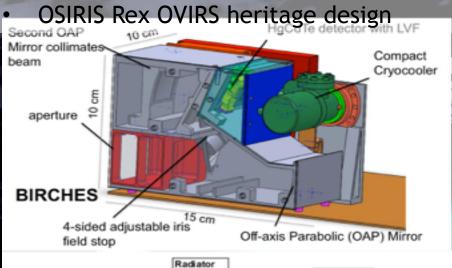
Government sponsorship acknowledged.

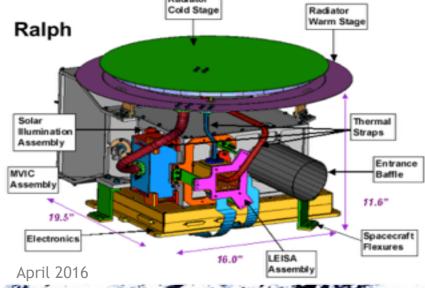
role of volatiles in the solar sys

- Enabling broadband spectral determination of composition and distribution of volatiles in regoliths (the Moon, asteroids, Mars) as a function of time of day, latitude, regolith age and composition.
- Providing geological context by way of spectral determination of major minerals.
- Enabling understanding of current dynamics of volatile sources, sinks, and processes, with implications for evolutionary origin of volatiles.

IceCube addresses NASA HEOMD Strategic Knowledge Gaps related to lunar volatile distribution (abundance, location, transportation physics water ice).

IceCube complements the scientific work of Lunar Flashlight by by observing at a variety of latitudes, not restricted to PSRs uber Developers 2016 Clarketal Lunar Ice

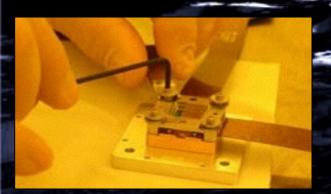

I and an I as Carles and	D					1.1218			110	
Lunar IceCube versus Previous Missions					C	1.00				-
Mission	Finding		IceCube		-			10		
Cassini VIMS,	surface water detection, variable			water & other volatiles		0.98			1. 1. 1.	
Deep Impact				fully characterize 3 µm	o c		1.			
Chandrayaan		OH (<3 microi	region as function of	ta		\mathbf{v}		· · · ·	100	
M3				several times of day fo		0.96	11	Sec. 1		ं
LCDOSS			as and mofile	same swaths over rang of latitudes w/ context		ł	.*	14 14		
LCROSS				regolith mineralogy an		0.94		1. S. S. N.		
LP, LRO, LEND				maturity, radiation and	- (1)					
LAMP	H+ in first meter (LP, LEND) & at surface (LAMP) inferred as ice			particle exposure, for	Ó	0.92	4.			
DVNR	abundance via correlation with			-	en	0.32				1
LOLA				data	<u>د</u>	Ì				1
LROC, LADEE	-	· · · · · · · · · · · · · · · · · · ·	phere (LADEE)			0.90	<u>.</u>			1
1			Contraction of the local division of the loc		n n	ŀ	-		1.1.1	11
		A STATE OF A			tir	0.88		(M) Mare Imbrium N (M) Mare Imbrium N		
		Table B 2 II	R measured vol:	tile abundance in	T Š			(3) Mare Humboldtia		
			ume (Colaprete			0.86		(9) Mare Humboldtia		100
				Relative to H ₂ O(g)*						
		H2O	5.1(1.4)E19	100%			2.8	3.0 3.2	3.4	3.6
		H2S	8.5(0.9)E18	16.75%	1			Wavelength	(<i>u</i> m)	
		NH3	3.1(1.5)E18	6.03%		arly	evi	dence for	1 /	121
	-	SO2	1.6(0.4)E18	3.19%		-		n trend		
	1	C2H2	1.6(1.7)E18	3.12%	-			by Deep		
M3 'snapshot'	lunar	CO2	1.1(1.0)E18	2.17%	1.0		-	et al. 200		
nearside indic			7.8(4.2)E17	1.55%	1.4				/	
surface coating		CH4	3.3(3.0)E17	0.65%			r IceC	ospatially		Jy
H_2O (blue) near		OH	1.7(0.4)E16	0.03%	1.	ulla				
(Pieters et al, 200			<u> </u>	text for fit in Fig 3C	1. L		i Mora			
				016 Clarketal Lunar Ice		£ .	× .		2	•
and the second s	1. 1.			ibe		4		· · · ·	3.	


Water Form, Component			
water vapor	2.738	OH stretch	
	2.663	OH stretch	B
liquid water	3.106	H-OH fundamental	0.100
	2.903	H-OH fundamental	
	1.4	OH stretch overtone	
	1.9	HOH bend overtone	
	2.85	M3 Feature	0.095
	2.9	total H2O	
hydroxyl ion	2.7-2.8	OH stretch (mineral)	
	2.81	OH (surface or structural) stretches	Bellectance
	2.2-2.3	cation-OH bend	
	3.6	structural OH	0.090
bound H2O	2.85	Houck et al (Mars)	
	3	H2O of hydration	Water
	2.95	H2O stretch (Mars)	Water V
	3.14	feature w/2.95	
adsorbed H2O	2.9-3.0	R. Clark	2600 2800 3000 3200 3400 3600
ice	1.5	band depth-layer correlated	Wavelength (nm)
	2	strong feature	
	3.06	Pieters et al	Ice Cube measurements will
Other Volatiles			encompass the broad 3 um band to
NH3	1.65, 2. 2.2	N-H stretch	distinguish overlapping OH, water,
CO2	2, 2.7	C-O vibration and overtones	
H2S	3		and ice features. Will have near 10 nm
CH4/organics	1.2, 1.7, 2.3, 3.3	C-H stretch fundamental and overtones	resolution in this band
Mineral Bands			
pyroxene	0.95-1	crystal field effects, charge transfer	Yellow = water-
olivine	1, 2, 2.9	crystal field effects	
spinels	2	crystal field effects	related features in
iron oxides	1	crystal field effects	the 3 micron
carbonate	2.35, 2.5	overtone bands	region
101	2		

Influences on Measurable Signal at Volatile Bands

8				
Influences	Effect			
Time of day	hydroxyl, water production/release as function of temperature, solar exposure			
Latitude	greater impact of local topography near poles			
Solar output	transient variations induced by solar output or events			
regolith composition	variation in availability of OH, FeO			
shadowing (slope orientation)	minimal or irregular illumination, lower temperature, potential cold trap			
regolith maturity	variation in extent of space weathering induced reduction by hydrogen			
feature type (impact or volcanic construct)	geomorphology induced cold trapping or internal volatile release			
age	age-induced structural degradation reduces influence of local topography			
major terrane (highland, maria)	combined age and composition effects			

- Broadband (1 to 4 um) IR spectrometer with HgCdTe and compact line separation (LVF)
- Compact microcrycooler to ≤ 120K to provide long wavelength coverage
 compact optics box designed to remain below 220K



Property	Ralph	BIRCHES		
Mass kg	11	2.5		
Power W	5	#10-15 W		
Size cm	49 x 40 x 29	10 x 10 x 15		
# includes 3 W detector electronics, 1.5 W iris controller, 5-10 W cryocooler				

BIRCHES utilizes a compact Teledyne H1RG HgCdTe Focal Plane Array and JDSU linear variable filter detector assembly leveraging OSIRIS REX OVIRS.

BIRCHES block diagram illustrates simplicity and flexibility of design.

Filter

AL controller

(stepper motor)

Special Radiator

Focal Plane

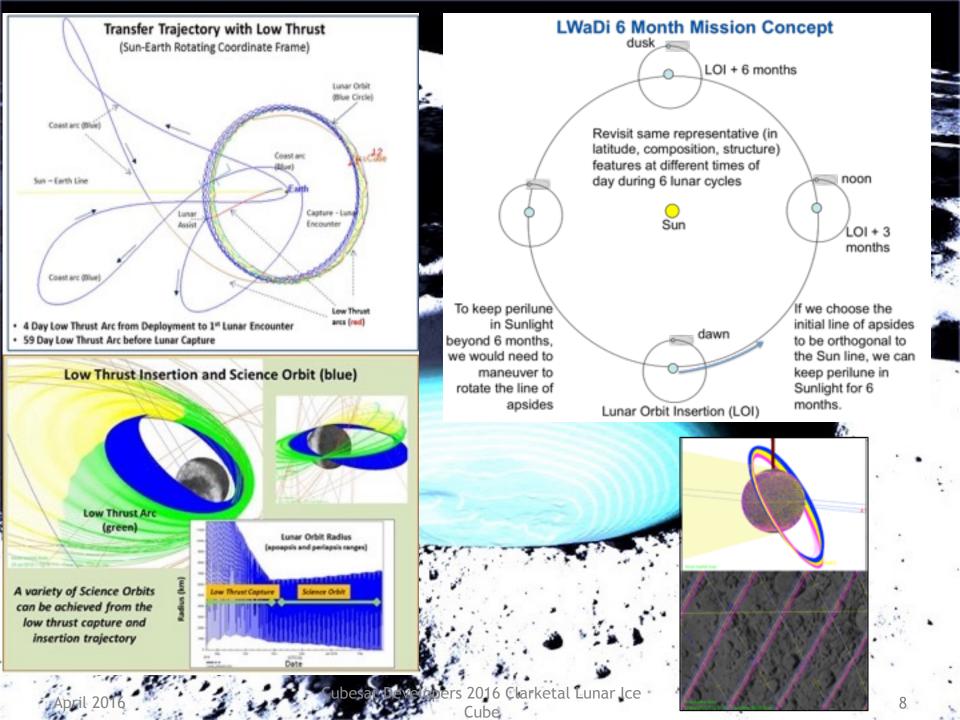
Adjustable Iris maintains footprint size at 10 km by varying FOV regardless of altitude

Off the shelf tactice cold finger to main subjectector at

larketal Lunar Ice

Optics Box

OAP


Adjustable

Iris (AI)

erture

JDSU LV filters

oler with

CubeSat Compatible Ion Propulsion PPU; (from top) DCIU, Housekeeping, Cathode/Valve, Grid HV, RF Generator & Power Ampiller EP THE REPORT OF THE PARTY OF THE

1/16" Subminiature Electride Cathode as ion Beam Neutralizer; Heateriese, 5W Nominal

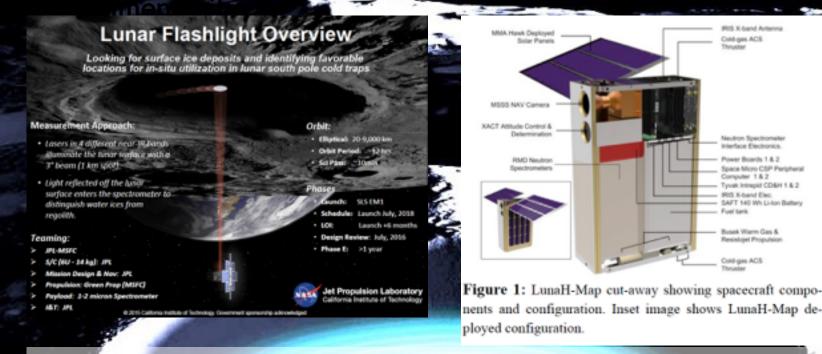
Maxon RE-8 DC Motor (2x for 2-Axis Stage); Flight Qualified, 0.5W

Busek 3cm RF Ion Thruster (BIT-3); 8 0W Nominal System Input lodine Propellant Stored as Solid Crystals; S00m Tom Storage Pressure

-External electron source to offset charge build-up Volume ~ 2 U, EM life testing 2016

April 2016

Cubesau Developers 2016 Clarketal Lunar Ice Cube Thermal Design: with minimal radiator for interior the small form factor meant that interior experienced temperatures well within 0 to 40 degrees centrigrade, except for optics box which has a separate radiator. Thermal modeling funded via IRAD work.


Communication, Tracking: X-band, JPL Iris Radio, dual Xband patch antennas. MSU has 21-m dish that is becoming part of the DSN. Anticipated data rate ~ 50 kb/s

C&DH: very compact and capable Honeywell DM microprocessor, at least one backup C&DH computer (trade volume, complexity, cubesat heritage, live with the fact this hasn't flown in deep space)

GNC/ACS: Modified Blue Canyon system. Multi-component (star trackers, IMU, RWA) packages with heritage available, including BCT XB1, which can interface with thrusters (trade cost, volume, cubesat heritage, live with the fact this hasn't flown in deep space)

Cubesal Developers 2016 Clarketal Lunar Ice Cube

Lunar Flashlight: Detect surface ice for PSRs polar region by measuring laser stimulated emission at several ice-associated lines.

LunaH Map: Detect ice in top layer (tens of centimeters) of regolith for PSRs polar region by measuring decrease in neutron flux (anti-correlated with protons) using neutron spectrometer.

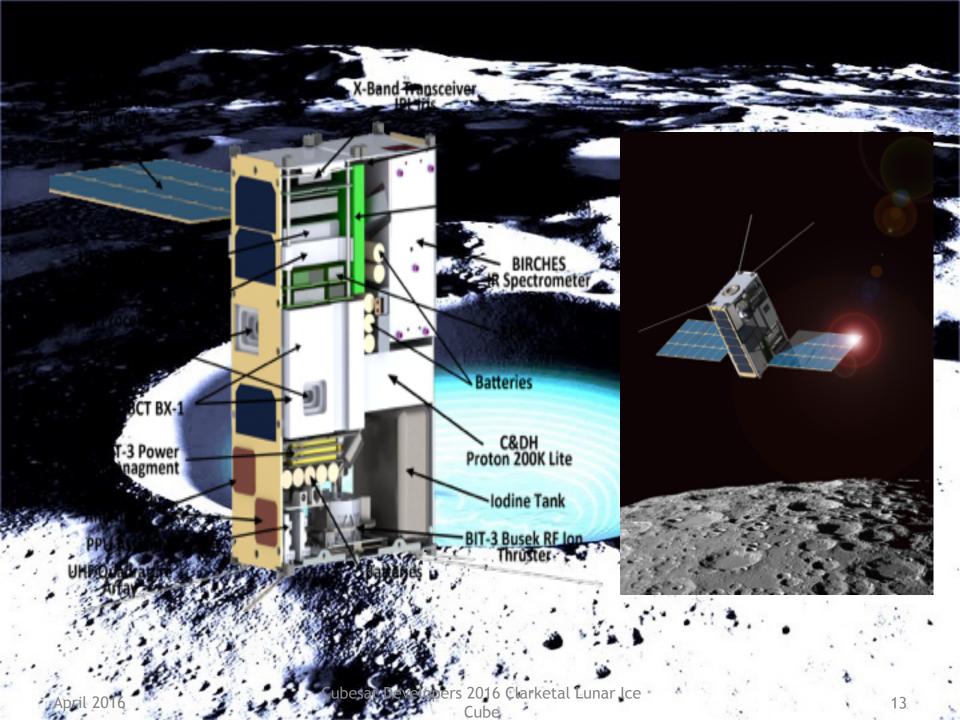
Lunar IceCube: Determine water forms and components abundances as a function of time of day, latitude, and lunar regolith properties using broadband point spectrometer.

Current status and issues

Data Access and Archiving: Discussions with LMMP on arrangements for data access and archiving. Proposal to PDART.

Volume: Additional volume accommodation for Iris radio and propulsion system. Building compact electronics.

Very high Vibration and Shock survival in requirements documents: deployer design will mitigate considerably and original margins are very high


Very large temperature range survival in requirements documents: partially mitigated by 'rolling' spacecraft once Orion deployed +1.5 hours).

Radiation issue: Deployment opportunity starts in the second lobe of the Van Allen Belt: 8 to 11 hours to get out...however only relatively small Total Ionizing Dose to deal with.

Thermal Design: major cubesat challenge. Using dedicated radiator to minimize temperature of optics box (<240K). Using microcryocooler to maintain detector at 120K.

April 2016

Cubesat Developers 2016 Clarketal Lunar Ice

- IceCube to place an IR spectrometer in lunar orbit to look for surface OH, water, other volatiles
- Correlate volatiles with surface mineralogy, surface temperature, illumination, solar wind, etc
- Examine changes in surface volatile content to get at dynamics issues! (like Sunshine et al., 2009 observation)
- Uses MSU cubesat bus, with Busek propulsion
- Enabling GSFC flight dynamics: Use of low energy manifolds to get into lunar capture
 - Propulsion solution and flight dynamic requirements uniquely solved in a self-consistent way
 - Creating a tailored solution with a standard platform

LunarInitiatives.com

Seattle, WA is the place and it's all about space at LunarScene 2016!

We've combined our highly regarded technical workshops on Lunar Surface Applications and LunarCubes with our Space Entrepreneur workshop and Hack the Moon hackathon for one spectacular, 10 day event.

September 26-27, 2016

The 6th International Workshop on Lunar Surface Applications

There are major opportunities for scientists and space entrepreneurs alike to get new hardware and instruments flying relatively soon and at low cost through privately funded platforms. Learn more about the latest technology, and the recent science and business plans that will fuel the Lunar Renaissance and open the Lunar Frontier, as private companies continue their push to explore space.

September 28-29, 2016 The 6th International Workshop on LunarCubes

Join the best space scientists, engineers, entrepreneurs and investors from around the world to discuss, explore, and redefine the technology, collaboration and commercial strategies required to make the most of LunarCubes, an unprecedented opportunity in space exploration.

September 30, 2016

Entrepreneur Day

Let's hear it for the Entrepreneur! Topics include Entrepreneurship for the Lunar Frontier, Collaboration & Partnerships in New Space and Funding for Space Companies - Tried and True vs. All That's New. This is a hands on training day with experts in the field ... crowd funding, crowd sourcing, and equity funding are just a few of the topics that will be discussed.

October 1-2, 2016

Hack the Moon

At Hack the Moon, students and space enthusiasts have the opportunity to come up with creative solutions to space-related problems, while New Space startups can create and launch their own successful Kickstarter campaigns. This is a hands on workshop - create one or more solutions to a real space problem and you and your team will be eligible for prizes.

www.lunarworkshops.com

pamela.e.clark@jpl.nasa.gov

Join us September 26 - October 2, 2016 for the Lunar Workshop of The Year -LunarScene 2016!