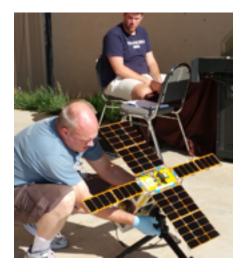
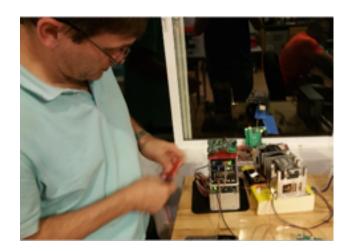


STARS

PUMPKI

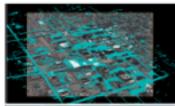

Steve Suddarth Matt Ebersviller **Tim DeBenedictis** Andrew Kalman Hadi Ali Akbarpou

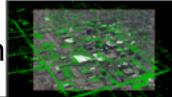

SUPERNOVA-Beta / InFocus TechSat I

- Demonstration/Validation of SUPERNOVA design (Pumpkin)
- High-resolution earth-imaging experiments (InFocus / Transparent Sky)
- Self-imaging, community functions (Southern Stars)

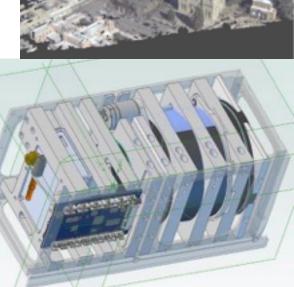
Objectives (SUPERNOVA-Beta)

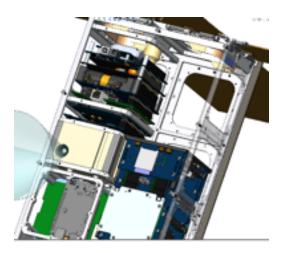
- Bus validation
- (Multiple) payload integration validation
- Validation of Communications Systems
 - Vulcan Wireless
 - Globalstar
- Validation of C2 System
 - Beaglebone-based
 - Software router

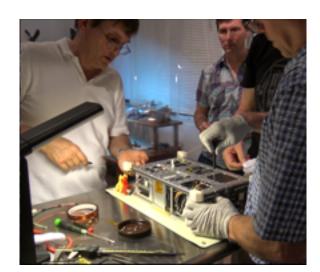




Objectives (InFocus, Transparent Sky)


- Real-time image processing experiments
- Use of embedded CPU/GPU on orbit
- Improvements to imaging via coupled processin control pipeline, only feasible on-board




Objectives (SkyCube, Southern Stars)

- Reflight of improved hardware developed for CrowdFunded SkyCube in 2012-2014
- Intended to provide consumer-grade Earth imagery, "tweets from space", inflatable de-orbit device
- Deployed from ISS by N two confirmed contacts

Unprecedented Time-To-Build

- 4 months from first concept meeting to delivery/ Flight Qual/ Integration with LV
- Numerous experimental items
 - Some made it some didn't
- Unprecedented level of integration
 - System had to allow InFocus sensor to ultimately control ADACS
 - Communications/routing challenges with experimental hardware/ software until delivery
 - CPU/GPU integration in development from suppliers during spacecraft integration

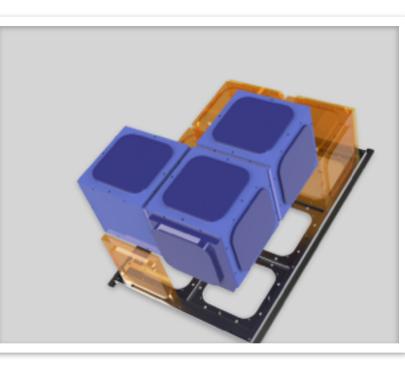
Six-U Performance Enhanced Radtolerant NanOsat Vehicle Architecture

- Developed under DoD RIF for Navy SPAWAR
- SUPERNOVA is a mission-agnostic bus designed for rapid, and simplified, integration of a wide variety of payloads.
- Well documented, standard interfaces.
 - Bus : Payload
 - Space Vehicle : Ground (MC3 compatible)
- Flight Software created in collaboration with Naval Research Lab (government rights, fully open to government users)
- Flight Software built upon the successful NRL Colony I QbX missions using Pumpkin's 3U bus.

SUPERNOVA-Beta Features

- Extremely rigid structure (6U: 197Hz @ 12kg) tested and validated at AFIT
- Supersymmetric design for ease of bus, payload & sensor integration
- 100x100x100mm Unit Cells support any and all CubeSat-compatible subsystems
- High-rel deployable 64W solar array
- All six faces available for Space Access Ports (SAPs)
- Full GSE interface (USB, Ethernet, charging, etc.)

SUPERNOVA-Beta Features (cont.)


- C&DH: 1GHz Debian Linux processor, running a mix of C and python
- Bus Interfaces: UARTs, I2C, SPI, USB, GPIO
- Payload Interfaces: Ethernet, UARTs, 3.3/5/12/VBATT switchable power
- Primary comms: VWI S/S @ 1Mbps
- Secondary comms: GlobalStar
- 3,000cc+ available to payload(s)

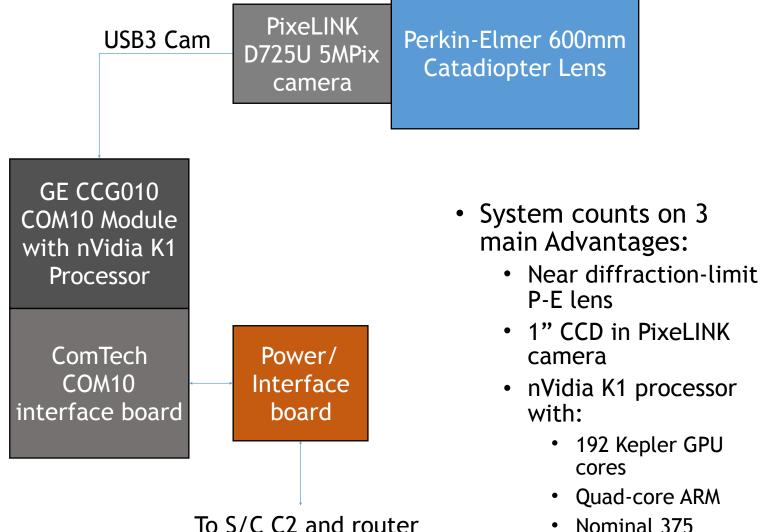
Beta – Before Environmental Test Attempted

- SUPERNOVA-Beta was a pre-release version of the bus,
 - NRL software was not yet complete
 - Environmental Test had not been attempted.
- Pumpkin built FSW on the fly
- Spacecraft completed flight qualified at ORS/ AFRL in Kirtland prior to integration with LV
 - 3-axis Vibration
 - Bake-Out
- Full Version (1.0) of SUPERNOVA is now available

Rapid Integration of Payload by following Bus ICD

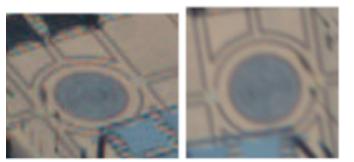
- Two payloads were developed independently
 - Independent of each other
 - Independent of Pumpkin bus
- Integration of both payloac was completed in ten days
 - Electrical and FSW
 - Mechanical
- Well thought out interface:
- Well documented ICD

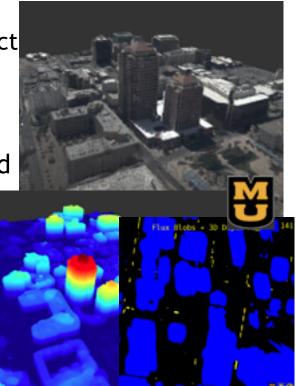
SkyCube 2 Payload


- Redesigned hardware!
 - Beefier Microcontroller
 - Removable Storage, IMU
 - StenSat Beacon Radio
 - Custom Monopole Antenna
 - Improved cameras

InFocus Sensor Block Diagram

 Nominal 375 GFLOPS


InFocus Sensor Construction


- Camera system is floating design decoupling lens and camera from frame in floating
 - Milled housing with PORON 4790-79-20093-04 compressed padding
- Construction and test of integrated camera/processor/ interfaces/heat spreader
- Power consumption measured varying between off-1W-4W-12W.
- All libraries, interfaces, and switchin functions demonstrated accessible at tested based upon prior airborne applications.

InFocus algorithms

- General flow:
 - Initial aim based upon ADACS data
 - Capture sequence of images while stabilizing ADACS
 - Enhance resolution from sequence
 - Optionally construct camera extrinsics/construct models
 - Optionally correct pointing based upon recognized features
- Proven airborne algorithms installed and tested in CPU/GPU (Transparent Sky and U. Missouri)
- (Note: video accompanying this slide)

Timeline To Conclusion

- Concept mid-April
- Delivery to ORS 3 Sep 2015
- Spacecraft was #2 payload on ORS-4
 - Launched 3 Nov 2015
 - Less than successful orbit injection (see graphic)

Lessons Learned

- Nothing ventured / nothing gained
 - Although the launch was 'free,' we were substantially out-of-pocket for all other costs.
 - Still, we do not regret the decision as we delivered on all the parts within our control.
- Work with people you know and trust
 - It worked well for us.
- FCC / NOAA licensing process needs improvement.
 - "Why didn't you start this process two years ago?"

Appreciation

- Thanks to ORS
 - for the launch opportunity
 - and for environmental test / Flight Qual.
- Thanks to SPAWAR
 - for their encouragement
- Thanks to Universal Space Network (SSC)
 - Establishing and testing comms on their network
- Southern Stars and Sterk Solutions
 - Solving NOAA and FCC licensing
- Especially thanks to Deborah Suddarth
 - for welcoming the team in her home.

What's Next

- Other missions are being planned using Pumpkin SUPERNOVA bus
- InFocus and Transparent Sky will repeat this mission to build their business
 - Investment opportunity
 - Seeking ride opportunities
- Proven design and team
- Future sats will be even more capable
 - Newer X1 nVidia processor
 - Higher data rate comms
 - Seek more airborne testing opportunities