

OPEN TECHNOLOGY FOR SPACE

Corvus-BC Manufacturing Lessons Learned

Brian Cooper 20 April 2016

Introduction

- Company History
 - Silicon Valley start up founded in 2015
 - Acquired Astro Digital in 2016 (Platform API for imagery data)
 - Decided to carry on *Astro Digital brand for joint company in the future (transitioning now)
- Mission
 - Build a system to monitor the global economy of food production
 - Design, build, and operate small multispectral imaging satellites
 - Monitor commercially active land at a high frequency (22 m daily, 2.5 m weekly)
- Methods
 - System integrators
 - Develop sub-systems and components when necessary
 - Provide data over web-based imagery platform
 - Work with partners in agri-intelligence, precision agriculture, security, and environmental/disaster monitoring
 - Opening up our design to enable others' missions

Our Background

- Team assembled from all areas of industry
- 100% of current team completed Perseus-M mission
- Now focusing on assembly, integration, and test of Corvus-BC constellation

Corvus-BC

LightSail

SRI –RAX 1

AmSat – Oscar Series

Perseus-M

4/20/16

Current Projects

aquila space OPEN TECHNOLOGY FOR SPACE

- Perseus-M ٠
 - Launched in June 2014
 - 2x 6U Automatic Identification System (AIS) CubeSat
 - On-orbit testbed: Hardware verification, ACS, Ka, etc.
 - Also used for Flight Ops plan development

Corvus-BC ٠

- Launch Q3, 2016
- 3x 6U remote sensing CubeSat
- Multispectral: Red, Green, NIR
- 22 m GSD

Corvus-HD ٠

- Launch Q1, 2017
- 1x 16U remote sensing CubeSat
- Multispectral: Red, Green, Blue, NIR, Red Edge
- 2.5 m GSD

Corvus-BC Overview

- Imaging solution: 22 m GSD at 600 km, Red, Green, NIR spectral bands
- Flight computer: ARM A8 running linux
- Power system: Scalable 48Wh Li-Ion
- Communication: UHF transceiver running at 19.2 kbps for TT&C. Payload data is downlinked through Ka-band at up to 320 Mbps
- Solar panels: ARM M0+ processor, temperature, magnetometers, sun sensors, and magnetorquer coils
- Control: 3-axis with three reaction wheels, star tracker, GPS, and gyro
- Camera Storage: 1 TB
- Imaging capability: 100,000,000 km² per day

Design for Manufacturability!

- Perseus-M and Lightsail were designed for optimum volume usage (i.e., tough to build)
- Corvus-BC is designed with easy assembly in mind
 - "Server Rack" style Data Power Module
 - Lots of parallel assembly prior to system integration
 - Easy access to all subsystems by removing one panel
 - Simplified procedures

Data Power Module

- DPM includes Flight Computer, EPS, UHF Radio, and GPS Receiver
- Each board is contained on a "Card"
- Easy to install and remove Cards with only 2 screws
- Allows for quick assembly and easy troubleshooting

4/20/16

Parallel Assembly

- Self-contained units that can be quickly integrated into S/C
- Simple interfaces between units limit system-level work

Simple System Assembly

- All internal units bolt onto one panel at the system level
- Easily accessible until the absolute latest stages of assembly

Simplified Procedures

OPEN TECHNOLOGY FOR SPACE

- Pictorial procedures allow for better comprehension and quick assembly
- Easier for assembler to understand designer's intentions
- Adapts well to changes
- Harness routing becomes much more of a science than an art
- A little more work to create the procedure initially, but it saves time where it counts
- Creating kits with all parts for a subassembly also speeds up the process

Software Testing

- For Aquila, software always seems to have to wait until final integration to run full-up tests
- We improved this time by integrating multiple development BenchSats early on
 - Imager BenchSat, Ka BenchSat, ACS BenchSat, etc.
- Perseus-M satellites also serve as on-orbit development platforms

General Observations

- Build early and often: If you can fit check something or connect two boards together early, do it
- No amount of analysis makes things work the first time (usually)
- Standardize your fasteners, connectors, parts, etc.
- Keep an eye out for upcoming bottlenecks

Questions?