

Moog Capabilities for Small Satellites CubeSat Launch and Deployment Accommodations

13th Annual CubeSat Developer's Workshop Joe Maly and Marissa Stender

Outline

- Moog Space Access and Integrated Systems
- Payload adapters and CubeSat accommodations
- Vibration and shock isolation for CubeSats
- Orbital Maneuvering Vehicles (OMVs) for customized satellite deployment
 - Propulsive ESPA for Atlas V and Falcon 9
 - Nano-Launch OMV for new class of launchers

Moog Space Access and Integrated Systems

CubeSat and OMV work is mainly supported by Moog personnel in Golden, CO, Mountain View, CA and Chatsworth, CA

- Moog Integrated Systems provides a focal point to harness the breadth and depth of Moog capability
 - Mission architecture/design
 - Launch strategy
 - Spacecraft systems engineering
- The IS group works with customers at the initial stages to identify and optimize technical, cost, risk and programmatic trades
- Moog has supported trades and developed concepts for:
 - Commercial GPS-RO Weather constellation
 - Commercial Broadband Satellite Mega Constellation
 - NASA Asteroid Return Mission
 - Non-traditional Mars Mission
 - Numerous mission concepts based on an Orbital Maneuvering Vehicle (OMV)

Moog Secondary Payload Adapters For Rideshare

- ESPA: Moog flagship adapter product (up to 300kg secondary payloads)
 - Atlas V, Delta IV, Falcon 9 heritage
- Moog has partnered on the development of nanosat deployers
 - Cubestack and NLAS Wafer adapters: 8x 3U, 4x 6U (or combinations)
 - FANTM-Ride: ESPAsat-sized box, 3U & 6U spacecraft with additional space for central microsat

Photo Credit: ORBCOMM

Moog Growing Family of Adapters

ESPA

ESPA 6-15-24 LCROSS

ESPA 4-15-24 DSX

ESPA 2-15-24-4PT EAGLE

CASPAR

ESPA as Bus:

LCROSS

CubeSat Wafer

ESPA SUM

OMV

ESPA 5-24-42 SHERPA

SL ESPA 15

Flat Plate Adapters SL ESPA 24 ESPA 4-24-32 SPECIAL OMEGA

ORBCOMM Generation 2 (OG2) on ESPA

ESPA Dispensers for OG2 constellation deployment

- M2M communication for transportation and distribution, heavy equipment, oil and gas, maritime and Government customers
- Seventeen OG2 satellites launched on two Falcon 9 missions July 2014 and December 2015

ESPA rings at Moog CSA in Mountain View

SoftRide installed at SpaceX SLC-40

photo credit ORBCOMM

Moog engineers assembling dispenser stack

OG2 Mission 2 Payload Stack and Deployment

- ESPA Grande stack with eleven OG2 satellites
- Deployment in Low Earth Orbit after rocket landing at Cape

SpaceX SLC-40 at Cape Canaveral

ESPA Dispenser deploys satellites on orbit

Falcon 9 launch and landing 21 December 2015

FANTM-RiDE[™]

Configurable enclosure for multi-manifest missions

- Collaboration between Xtenti and Moog CSA
- Mix and match CubeSats with microsats and other nanosats in ESPAsat-sized box (610 mm x 610 mm x 812 mm)
 - FANTM-RAIL: CubeSat deployer in development
 - 3U and 6U spacecraft two deep along interior walls, leaving space for central microsat
 - Compatible with multiple launch options
- Mass tuned for flexible integration schedule
 - No need for last-minute coupled loads analysis
- Integration services provided by Xtenti

Xtenti

Vibration/Shock Isolation for CubeSat Launch

- Presentation at Small Satellite 2015* showed cyclic loading contributes significantly to CubeSat failures
 - Accelerations due to random vibration and shock
 - Thermal loading
 - Pressure, vacuum, humidity cycling
 - Assembly cycles
- Vibration isolation can be used as low-pass mechanical filter to greatly reduce accelerations on payload
 - Whole spacecraft vibration isolation has reduced dynamic environments for satellites on 36 launches since 1998
 - Moog CSA SoftRide has flown on vehicles ranging from Terrier Orion and Minotaur to Delta IV Heavy
- New isolator design for CubeSats developed for shock isolation of industrial equipment
 - ShockWave (patent pending) isolators

* *Methods to predict fatigue in CubeSat structures and mechanisms,* Holemans, Azure, Hevner, Planetary Systems Corp., 12th Annual Summer CubeSat Developers' Workshop

ShockWave Isolators for CSDs

- 2nd generation CubeSat dispensers feature fixed mounting of payloads within enclosure
 - Fixed mounting provides linear behavior during shock and vibration loading, enabling dynamic testing and finite element analysis
 - Planetary Systems Corporation's Canisterized Satellite Dispensers (CSDs) will be used for Exploration Mission 1 (EM-1) payloads
- Moog ShockWave isolators were tested as part of PSC's 6U CSD qualification testing
 - Significant mitigation measured in sensitive frequency ranges for CubeSats
- ShockWave product sheet in development
 - Lookup table to set isolation break frequency based on isolator stiffness and number of isolators
 - Pricing compatible with CubeSat program budgets

ShockWave Test Results

Testing performed in 2015 for industrial application

- 40x reduction in shock loads
- Peak acceleration < 10 Gs

ShockWave Testing at PSC

6U CSD mounted to vibration table with eight ShockWave isolators

Accelerometer locations C1 thru R4 shown

Accepting Hole

SPACE AND DEFENSE GROUE

#10-32 SHC Screw (Not Shown) to mount to adjoining Structures

Isolators reduce g RMS levels by factor of 13!

Copyright 2016 Moog Incorporated

SPACE AND DEFENSE OBOUR

Orbital Maneuvering Vehicle Update

OMV Architecture

- The OMV architecture is based on a breadth of capabilities from across Moog's Space and Defense group
- The goal is to provide a baseline capability that can be expanded and upgraded to meet each specific mission's requirements including:
 - Flexible avionics architecture (variable redundancy, hosted payload ability)
 - Modular power system for a range of load configurations and mission durations
 - Highly adaptable propulsion architecture balancing cost, performance and versatility
- Notional Flight Readiness: Late 2018

Small Satellite Deployment Concept

ELLIE: Earth-Sun L1 Mission (Moog/ AMES/Langley Team)

Stand-alone Propulsion Module + ESPA

Copyright 2016 Moog Incorporated

Typical Operations & Orbits

- An OMV, or a passive ESPA ring, can be launched in multiple configurations
 - Individual entity below Primary Payload
 - Example: STP-1 launch (see graphic)
 - As part of a larger stack of ESPA rings
 - Moog integrated a three-stack ESPA configuration for launch on a SpaceX Falcon 9 return-to-flight in December 2015
- An OMV can act as a tug or a hosted payload platform
 - For launches to sun-synchronous orbit (SSO), an OMV can provide altitude and the small inclination changes required to maintain sun-synchronous inclination
 - For longer duration missions, the OMV can remain on-orbit to provide all the necessary capabilities to power a payload and downlink data

Image from www.ulalaunch.com

Notional LEO Rideshare CONOPs

Timeline

- OMV Drop-off at 450 km SSO
- Detumble
 - Deploy Initial Payload(s)
 - Slew to +/- 45° off of velocity vector to minimize chance of recontact
- Increase Altitude and Change Inclination to maintain sun-synchronous orbit (550 km/97.59°)
 - Deploy Payloads
- Repeat maneuvers and deployments (650 km/97.99°)
- Deorbit OMV

CONOPs delta-V requirement: ~325 m/s

Expanded CONOPs: Add phasing maneuvers within a single orbital plane for constellation delivery

teployment

45 ^{deg}

Mission Simulation

Moog Nano-Launch OMV (NL-OMV)

- Designed for a lighter primary payload & smaller diameter launch vehicle fairing
 - Delta-V >350 m/s fully loaded
- Minimal Mass
 - Composite Cylinder Adapter: 38.81" Bolt Circle interface, 20" Height
 - Lightweight CubeSat dispensers
 - Tyvak RailPOD (shown)
 - FANTM-RAIL
 - Teton Aerospace dispenser
- Maximized Payload Carrying Capability
 - 16 x 3U CubeSats
- Modularity
 - Flexible adapter height
 - Customizable quantity of dispensers
 - MPU tank size can be increased with no change in the pedestal adapter size
- NL-OMV is an option for small "Venture Class" launch vehicles

Moog's Modular Propulsion Unit (MPU)

Contact Info

Please contact us with any questions or potential applications you would like to discuss

- Joe Maly
 - jmaly@moog.com
 - 650-960-4226
- Marissa Stender
 - mstender@moog.com
 - 720-557-3872

