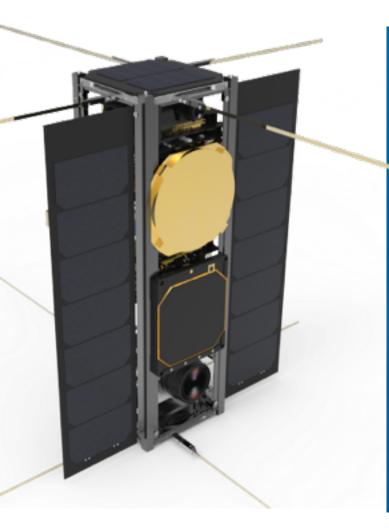
A Framework for Mission Assurance Exploiting Automation

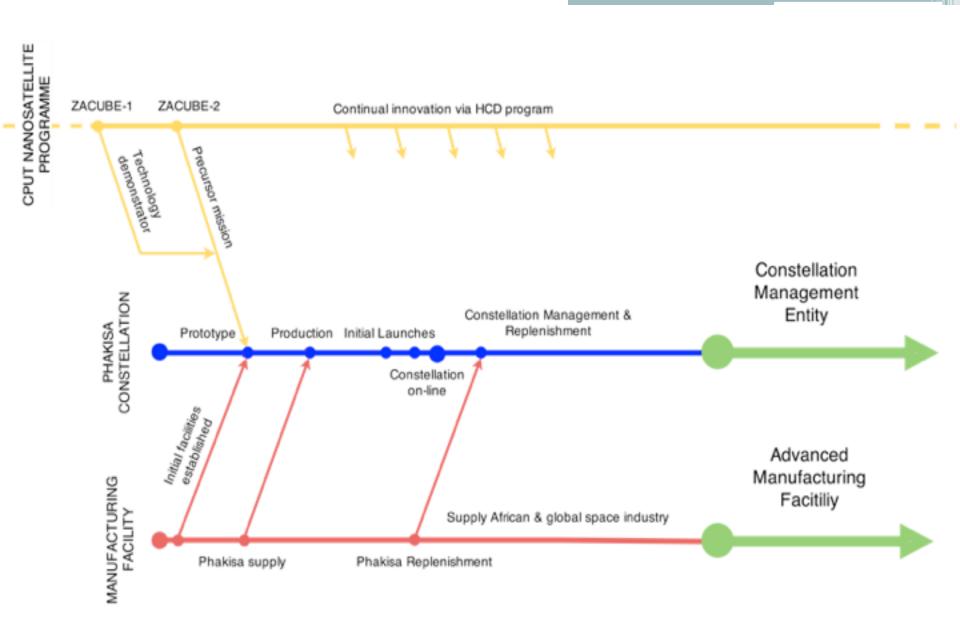
Yaseen Zaidi, Norman Fitz-Coy & Robert van Zyl

Cape Peninsula University of Technology

Maritime domain awareness



The nano-satellite constellation enables the effective monitoring of South Africa's extensive ocean and coastal areas to facilitate national maritime domain awareness.


Benefits:

- effective vessel tracking
- enhanced security and safety
- monitor activities within ocean economy
- marine protection
- maritime trade information

ZACUBE-2 | MDA Precursor

- Feature AIS/VDES vessel tracking capability
 - Flexible Software Defined Radio to enable rural connectivity to remote health clinics and educational facilities
- Medium resolution imager to monitor field fires, oil spills, ...
- Launch-ready 2017

Verification & Validation (V&V)

- 1992 survey of 2500 spacecraft failures 1962-1988
 - (Musgrave, Larsen & Sgobba 2009)

• 48% of nanosats survive after launch

(Bouwmeester & Guo 2010)

Failure Cause	%
Design	24.8
Environment	21.4
Operations	4.7
Parts	16.3
Quality	7.7
Other	6.3
Unknown	18.9

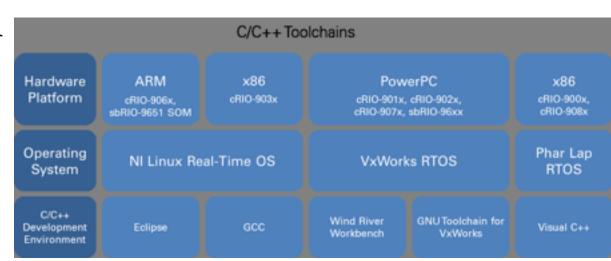
Module or Subsystem	%
Bus	73.3
Telemetry, Tracking and Command	24.6
Guidance and Navigation	13.6
Electric Power	13.2
Data Handling	9.1
Thermal Control	5.6
Propulsion	3.7
Structure	3.5
Payload	26. 7
VIS and IR Optical	13.1
Comms	5.2
Special Payloads	4.9
Navigational	3.5

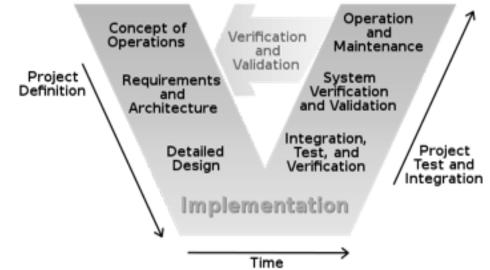
Testbed (Functional & Environmental)

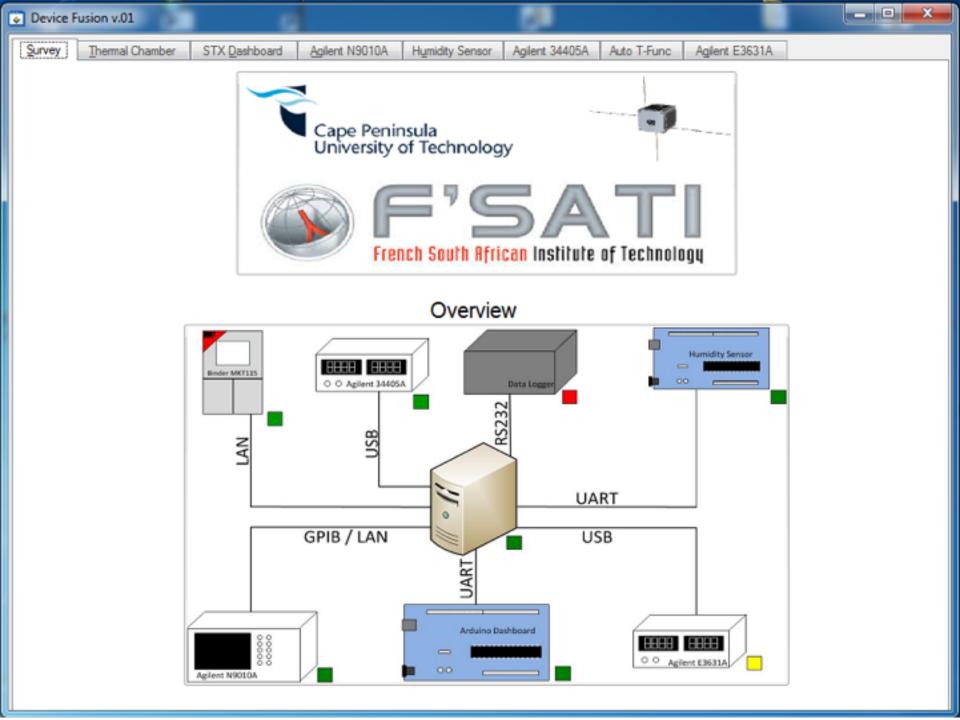
- Student project
- LabWindows[™]/CVI

LabWindows/CVI Real-Time

Reliable Test, Deterministic Performance in C


- C for Virtual Instrumentation with Real Time Module
- IDE, GUI development, ATE drivers, measurements, analysis
- Communication interfaces
- Automatic Test Equipment
- Thermal chamber


Futuristic Development/Test/V&V in C

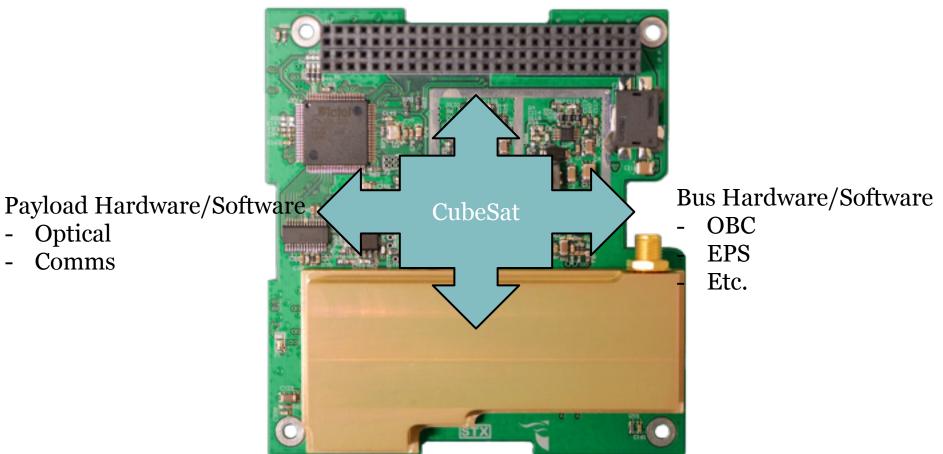

- Control ATE using algorithms e.g., in-orbit wattage profile, power management
- C data types: access to ext. sims thru TCP/IP sockets
- Interface with HDL EDA (VHPI/VPI)
- Custom protocols e.g., for thermal chamber
- FPGA interface C API
- Low-level system debugging and precision execution

Goals of Automation

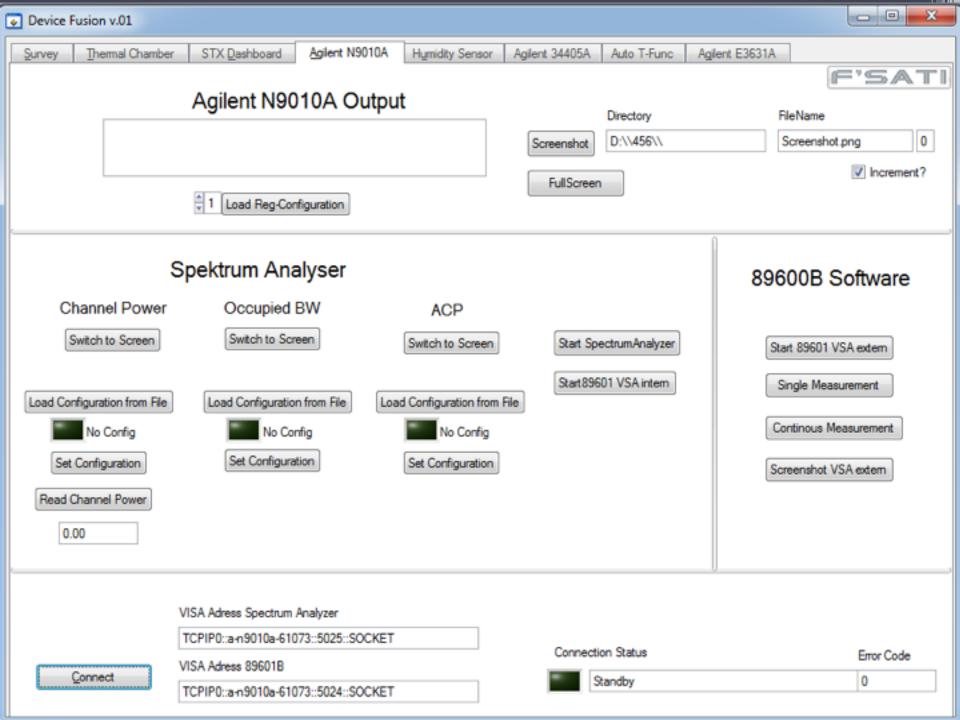
- Co-engineering
- Efficiency (time, resource and cost control)
- Acceptance level testing
- Product profiling, test report
- Theses and internships
- Not to find hardware/ software bugs

Testbed & Automation Features

- Event-driven, human interface
- DUT configuration (e.g., FPGA registers)
- Encapsulation
 - Test methods and test logic
 - ATE configuration
- Measurement visual display
- Ilities
 - Modular (multiple, independent developers)
 - Readable (common enforced style for VIs)
 - Tabular (abstraction for test centric, ATE centric and product centric views)
 - Scalable (limited versions)
 - Re-usable (common ATEs, tests methods)
 - Adaptable (product variants)


DUT Configuration Loop

	Missurance v1.0	- • ×			
Surwy Demai Chamber STX DeMoted CMC Queboard	Aglent 16010A Hymidity Sensor Aglent 34405A Auto T.Func J				
STX Dashboard		F'SATI			
o n o dano da l	Received	Data 💿		Missurance v1.0	
Set Mode	Corfig Register) Şin	wy Diemai Chamber STX Qualiboard CMC Qn9board	Aglent NSI/15A Hymidity Sensor Aglent 34405A	
Carfig Sync Mode Data Mode Test Data Mode	Encoder Register		CMC Dashboard		F'S/
	Frequency Offset		Chic Dashboard		Received Data
Power amplifier	Version Number		CMC CMCC	Downlin	•
	TX(Buffer Underruns		O O UC Address 25 Correct		·
Set DataRate	TX Buffer Overruns		Set Mode	Uplak	erSetting
1 12 14 18	TX: Count		D3401k2 D1k203k6 D3k603k6		
0 0 0 0	VDet		O O O ⊡TerrentC		
0 09P5K	PATemp		Set Power	Ta Offer	
0.029K	TopTemp		2 1 12	RxFmp	Jency
Offee	Bottom Temp		0 0 0	Tx Firep	att cy
0	Battery Current		Set Frequencies	PAFarr	and Power
Set Power	Eattery Vohage		RxFrequency TxFrequency	PARen	eras Perser
1 12 14 M 0 0 0 0	Current SV	_	0 145 0000 0 425 000 Write	SMPST	enpeature
Offset Frequency	Voltage DV		LED 0 LED 1	PATem	perature
0 2400 Write			0 0	Current	7/0 InA)
			Connect 3 COMPort	Voltage	340
001 101 001			Carried 3 CONTRE	Current	9V
COMPart		Reset		Votage	9V
Connect 4					Beat
1					Reset


HIMA ATT

Functional Test Loop

Simulators, Emulators, Debuggers

ATE on Instrumentation Bus

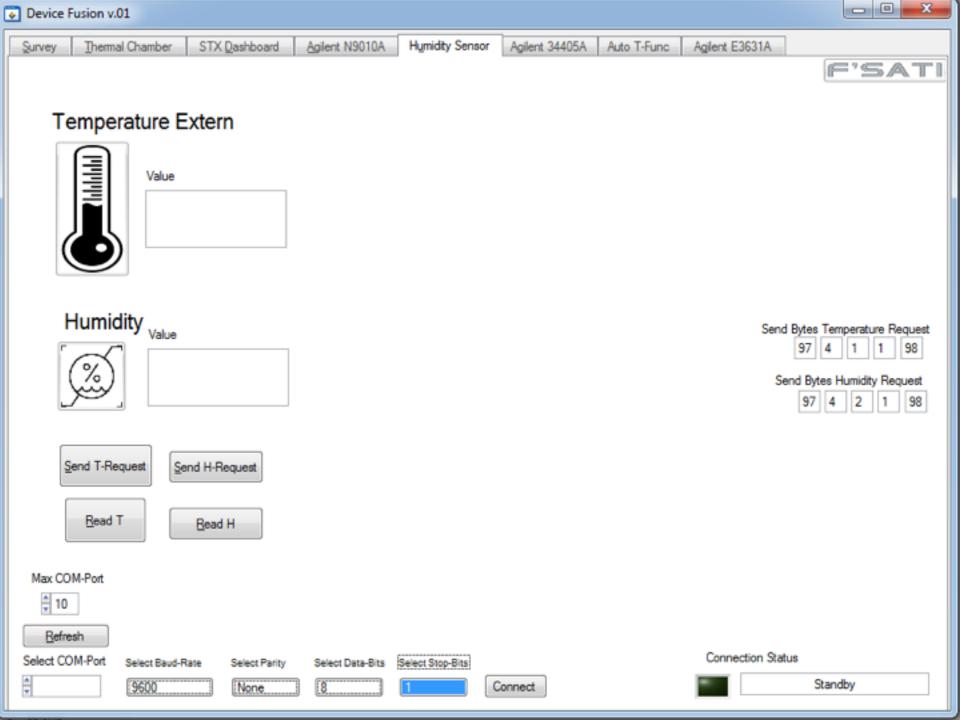
Thermal Test Loop

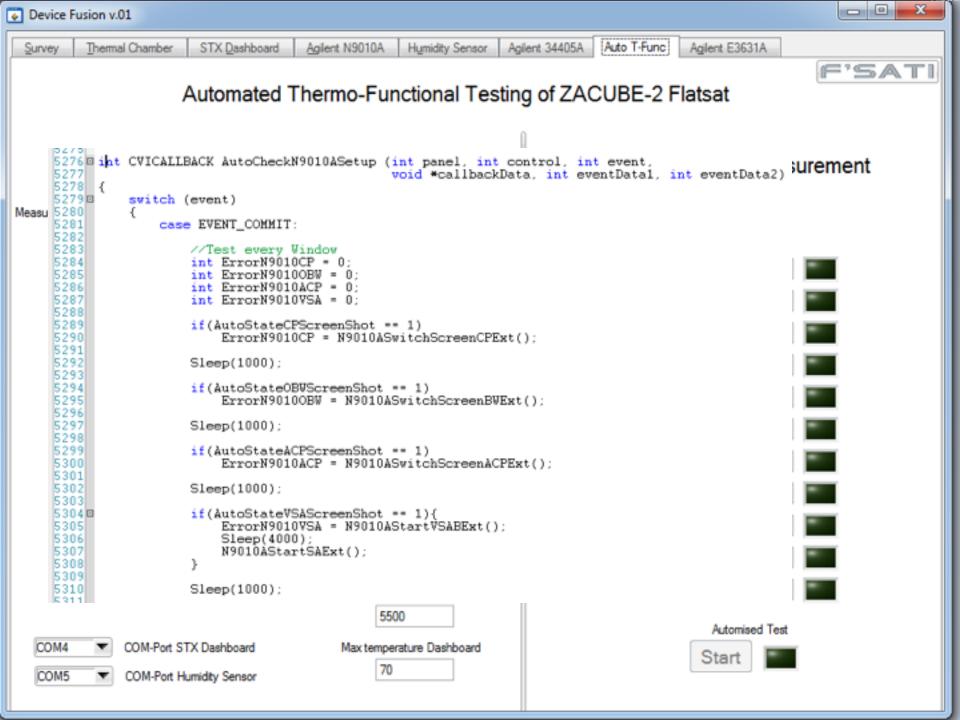
Debuggers

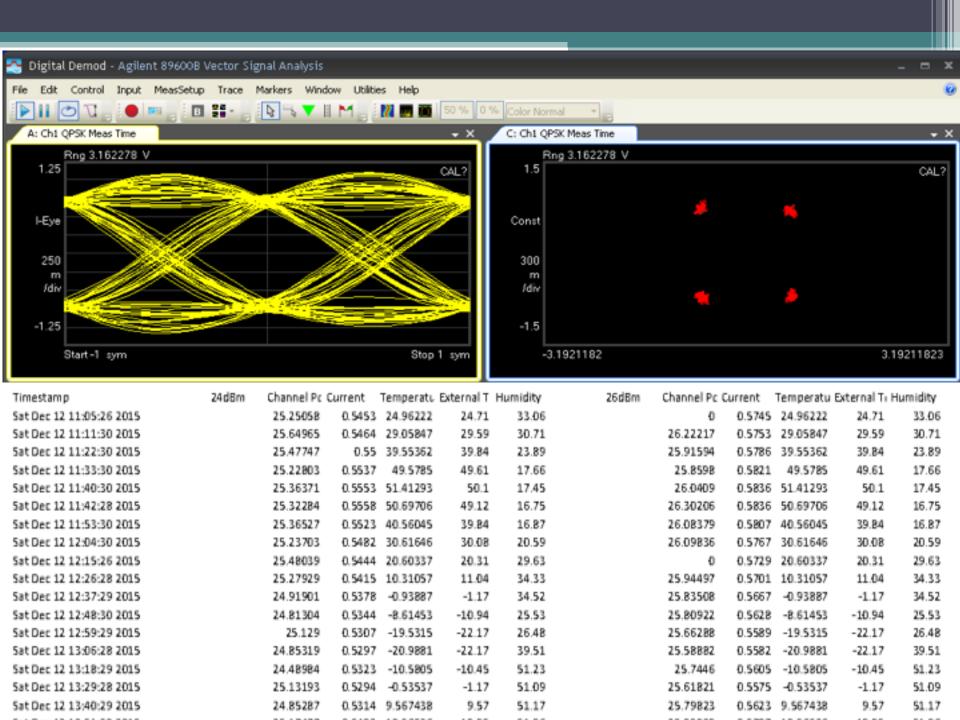
Payload Hardware/ Software

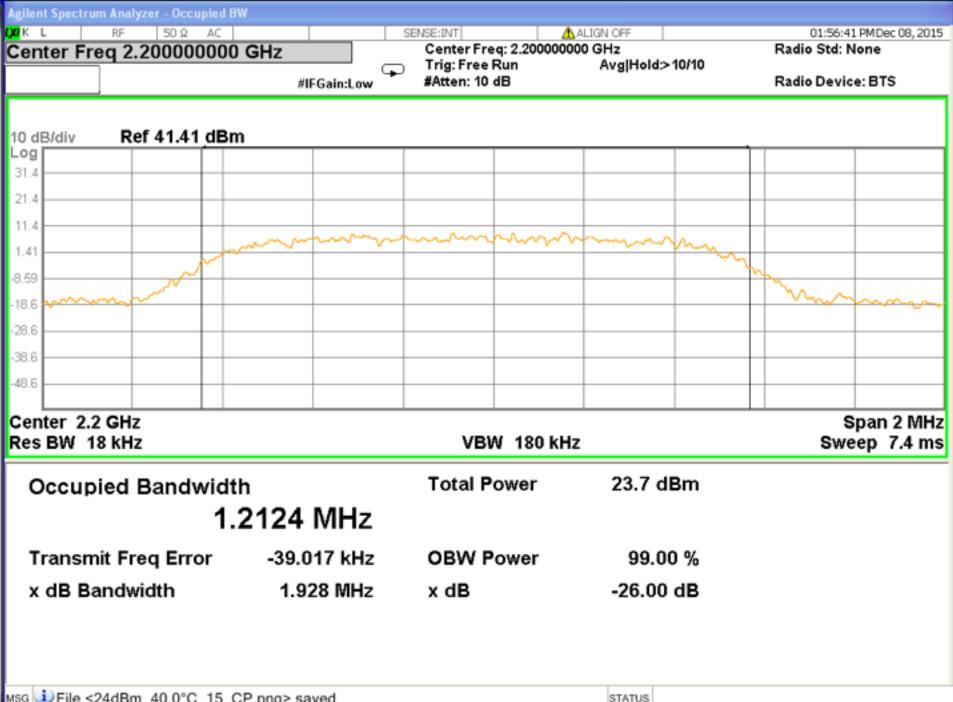
- Optical
- Comms

Bus Hardware/ Software

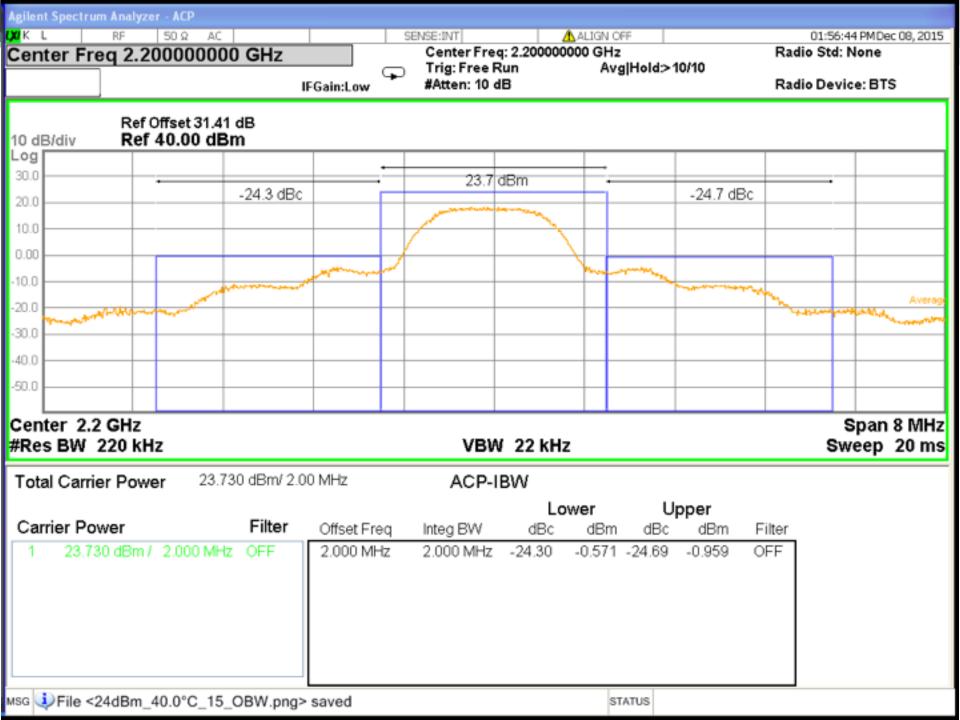

- OBC
- EPS
- ADCS


ATE on Instrumentation Bus


Device Fusion v.01


vey	Thermal Chamber	STX Das	hboard	Agilent N	19010	A Humidity Se	insor A	gilen	t 34405/	A AL	ito T-Fi	inc	Agle	nt E36	31A				
erm	al Chamb	er MKT	115										Tempe	rature			r=1	5/	
		amber Control						1	- 00										
Temp		isetime in min	Measurem	ante la					95 -	-	-	_						-	
20.00		.00	0	ients -		Read Table			90-	_	_			_	_		_	_	_
0.00		.00	0		lĽ				85-	_			_			_	_	-	
0.00		.00	0						80-						_		_	_	
0.00	_	00	0			Load Table			75-										
0.00	_	00	0		Ľ				_	_	_	_	_					_	
0.00	_	.00	0		l c				70-										
0.00		.00	0			Save Table			65 -							_		=	
0.00	0.	.00	0		17				60 -								_	_	
0.00	0.	.00	0			Start		ပ္	55 -							-	_	-	
0.00	0.	.00	0		1	- Charachara	_	Tempin	50 -	_	_						_	_	
0.00	0.	.00	0			Standby		E I	45-	-	-	-	-				-+		_
0.00	0.	00	0						40-						_			_	
0.00	0.	.00	0						35-						_		_	_	
0.00	0.	.00	0						30-		_							_	
0.00	0.	.00	0						_	_	_								
0.00	0.	.00	0			Manual Control			25-						_	_		\mp	
0.00	0.	.00	0			0.00			20-						_		_	_	
0.00	0.	.00	0				_		15-	-	-			_			_	-	
0.00	0.	00	0			Set Temperature			10-	_	_		_	_			_		
0.00	0.	.00	0						5-							-	_	\rightarrow	
0.00		.00	0		1	Start			0-,										
0.00	0.	.00	0		-				ŏ	10	20	30	40	50	60	70	80	90	1
<u> </u>				,		Actual Temperat	ure						Т	ìme in	min				
		IP-Adress				0.00				D						Diffe	rence		
Mo nual	de Automatic	10.27.23.4	2				Me	asure	ement Tir	Proto me J		ocal Ti	mestar	np		0.00)		

- 0 х Device Fusion v.01 Thermal Chamber Agilent E3631A STX Dashboard Agilent N9010A Humidity Sensor Agilent 34405A Auto T-Func Survey F'SATI Power Supply E3631A Power 100-95-Read Table Start Power Supply 1 90-VISA Adress 85-GPIB0::3::INSTR Device 1 80-Connect Load CH1 Standby Ch1 V Ch2 V Ch3 V 75-Load CH2 5.00 5.00 5.00 70-Load CH3 65-60-Power Supply 2 VISA Adress 55-Power in W GPIB0::5::INSTR 50-45-Connect 40-Power Supply 3 35-VISA Adress Ch1 Power Ch2 Power Ch3 Power 30-GPIB0::5::INSTR 0.00 0.00 0.00 25-Connect 20-15-Power Supply 4 10-VISA Adress 5-GPIB0::5::INSTR 0-100 Connect 70 90 40 80 0 10 20 30 50 60 Time in min Power Supply 5 VISA Adress GPIB0::5::INSTR Connect



MSG DFile <24dBm_40.0°C_15_CP.png> saved

WiP

Compact TM & Command Radio Future Work

- Helmholtz coil
- EPS simulation/in-orbit solar panel emulation
- Susceptibility test in reverberation chamber
- OBC
- HIL
- EM model

