

Lights Out: Evolution of an Automated Ground Segment for Operation of the Aerospace CubeSat Constellation

Christopher Coffman Darren Rowen Joseph Gangestad Brian Hardy

The Aerospace Corporation Aug 9, 2015

© The Aerospace Corporation 2015

Presentation Outline

- Background
 - The Constellation and Ground Station Network
 - Historical Setup
 - Goals/Requirements
- Initial Evolution
- Automation
- System Architecture
- Automation Examples

2

Background The Constellation

Background The Ground Network

- Ground Stations
 - Texas
 - Florida
 - California

- Features
 - Vehicle Independent

Background Mission Flow

Background Historic Operations - Tools

- Tools
 - Mission Planning Software
 - Generates vehicle tasking
 - Ground Station Control Software
 - Uploads tasking
 - Allows direct vehicle commanding
 - Pass Management
 - Pass data manually logged
 - Telemetry Handling
 - Parser Scripts
 - Time Tagged Files
 - Data compiled in Excel as needed

Software Key		
-	MATLAB	
-	VB6	
-	Excel	

- Problems
 - Labor Intensive
 - Numerous repetitive tasks
 - Idle vehicles
 - Still need to collect health telemetry
 - Coordination is Difficult
 - Data Overload
 - Telemetry is not readily accessible
 - Hard to find and identify specific events
 - Multiple Code Bases
 - Constellation is Growing!!!

System Evolution The Goal

- Driving Goal
 - Reduce The Required Labor to Maintain the Constellation
- How
 - Automate Ground Stations
 - Simplify Coordination
 - Automate Telemetry Collection and Aggregation
 - Automate Basic Fault Detection
- Requirements
 - Do not interfere with user planned missions
 - Interact with existing software

System Evolution First Steps

- Step 1 Scripted Ground Stations (2012)
 - Socket Based Program
 - Server Powers client per schedule and sends command file
 - Client Executes command files and returns telemetry to server
- Step 2 Pass Management (March 2014)
 - Database driven website
 - Provides automatic handling for simultaneous users
 - Database acts as central repository for other programs
- Step 3 Telemetry Handling (July 2014)
 - Automated telemetry binary data parsing
 - Aggregate in database

8

System Evolution Notes on Pass Management

- Import Predictions to Database
- Identify Conflicts
 - Considerations
 - Ground Station Restrictions
 - Vehicle Restrictions
 - Timing!!
- Store Conflict Data
- Management Interface
 - Claiming pass locks out conflicting passes
 - Allows super users to bypass conflict management

9

System Evolution Website Architecture

- Website Advantages
 - Platform Independent
 - Simple Access Control
 - Elegant Visualization
 Tools
- Django Platform
 - Python Backend
 - HTML, CSS, Javascript Frontend
 - Advantages
 - Python Based
 - Template System
 - Module Based

System Evolution New Mission Flow

System Evolution

Introducing Automation

- Step 4 Basic Automation (August-October 2014)
 - Collect Basic Health Telemetry Automatically
 - Generate simple vehicle and ground station tasking
 - Generate vehicle priorities
 - Ground Pass Tracking
 - Parse results from ground pass server and import to the database
 - Vehicle State Tracking
- Step 5 Contextual Notifications (January 2015)
 - Email Alerts
 - Automation Failures
 - Vehicle Health Alerts
- Step 6 Advanced Automation (May 2015)
 - Complex Telemetry Collection
 - Vehicle Specific Automation

Constellation Automation

Deciding What to Do

Determine Priority

- Considerations
 - User Set Priority
 - Vehicle Restriction
 - Is Telemetry Available
 - When Will Telemetry Buffers Rollover
 - When Does the Current Taking Expire
- Requires a Blending Algorithm!!

Considerations

- Conflicts
- Can Tasks be Combined

Allocate

Passes

- Timing!!
- Assign Passes based on Priority

Generate Missions

- Generate in Execution Order
- Generate Just Prior to Execution
 - Allow End Users First Choice of Passes
- Look for Completed Missions while waiting for next Mission Generation

Constellation Automation Automation Flow

Constellation Automation Basic Architecture

Complex Joint Experiment Planning with CubeSats

- What does it take to execute a complex joint experiment?
 - Accurate ephemeris prediction
 - Precise attitude control
 - Coordinated data exchange between planning groups
 - Accurate on-board clock & ability to execute time based stored commands
- Ephemeris Prediction Options:
 - JSpOC TLEs are released on a (mostly) daily basis
 - Position errors can be too large for some experiments
 - Error is 1–3 km at epoch
 - Error grows at ~10 km per day, making advanced planning difficult
 - GPS Derived Ephemeris
 - Requires on-board GPS receiver
 - Requires potentially large ground network to downlink timely GPS data
 - Requires complex orbit determination software

Automation Use Cases Complex Joint Experiment Planning with CubeSats

Ephemeris Prediction Position Error as a Function of Planning Lead Time

Lead Time	In-Track Position Error	Cross-Track Position Error	Radial Position Error
T-14days	~100 km	~100 m	~2 km
T-3days	2.0 km	12 m	40 m
T-2days	0.4 km	<10 m	<10 m
T-1days	0.3 km	<10 m	<10 m
T-0.5days	0.1 km	<10 m	<10 m

- Note that lead times less than 12 hours could produce better accuracy, however, short lead times are not practical
 - Limited to ground station access times for GPS data downlink
 - Complex experiments require time for planning, data exchange & command uplink

Complex Joint Experiment Planning with CubeSats

- Regular GPS fix scheduling & downloading is a burden on the ground network
 - Requires multiple contacts per day to ensure "fresh" GPS data is available for planning

Complex Joint Experiment Planning with CubeSats

- GPS data needs to be well distributed throughout the orbit and collected for multiple orbits per day
 - Each vehicle can collect ~1700 fixes per month to support advanced planning
 - Fixes need to be parsed & entered into a database

- Two Spin Stabilized 0.5U CubeSats
- Primary Mission
 - Correlate observations and study small-scale radiation belt structure

- Unique Requirements
 - Always on
 - Gathering dosimeter telemetry
 - Maintaining spin stabilization
 - Proximity Operations
 - Need to adjust vehicle separation using differential drag
 - Regular Contact Intervals
 - Downlink dosimeter telemetry
 - Downlink pointing telemetry
 - Uplink payload commanding
 - Uplink pointing commands for differential drag

- Regular Cadence to the Mission Operations
 - Requires 1-1.5 hours to plan daily

Interval	Task
12 hours	Download Dosimeter Telemetry
1 day	Download Pointing and Health Data
1.5 day	Upload Pointing Commands
2 weeks	Collect GPS Data
2 weeks	Clear Pointing Telemetry Buffer
1 month	Clear Health Telemetry Buffer

Highly Automatable

Automation Use Cases Science Missions

• Automation Turned on May 15th

Conclusion

- It's possible to blend existing tools into an Automation System
- Taking an incremental approach is a practical method for developing an Automation System
- It now take fewer man hours to run 8 satellites than it previously took to run 1

All trademarks, service marks, and trade names are the property of their respective owners.

Questions?