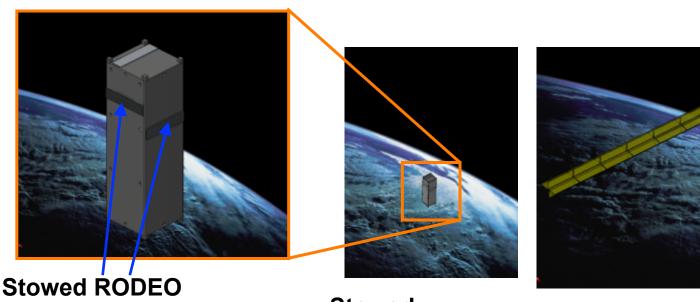


Flight Testing of a Low-Cost De-orbiting Device for Small Satellites

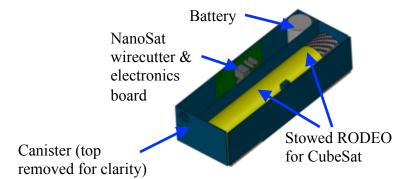
Presented at 2015 CubeSat Workshop Logan, UT August 8-9, 2015

Presenter: Dana Turse Co-authors: Mark Reavis, Phil Keller, Chris Koehler (COSGC)


Orbital Debris Problem

- >21,000 objects larger than 10cm being tracked by U.S.
 Space Surveillance Network
- NASA Specification NASA-STD-8719.14
 - All new satellites must have known re-entry plan
 - 25 years until atmospheric reentry

RODEO Roll-Out DE-Orbiting devices



Stowed RODEO Modules

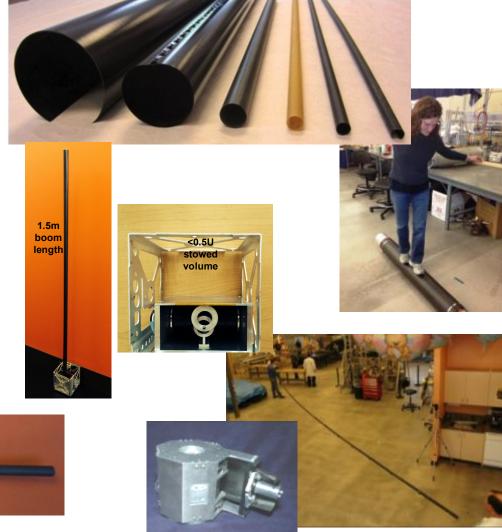
Stowed

Deployed

Key Technology is Rolled Composite Boom

- Multifunctional
- High Specific Stiffness
- Simple & Reliable; few moving parts

Concept of Operations


- Inside the RODEO™ housing is a very simple electronic circuit board and battery. The board only has two inputs and a ground wire.
 - The first input is to initiate a commanded release by supplying spacecraft voltage.
 - The second input supplies a very small trickle charge to the battery and resets a timer circuit so that RODEO™ will remain stowed. However, if the spacecraft loses functionality and stops supplying the trickle charge, the timer circuit initiates and begins counting. After a pre-determined period of time with no trickle charge supplied, the timer circuit executes an automatic command to deploy the RODEO™ drag sail.
- Once the command to deploy is sent (either manually or via the timer circuit) an internal hot wire will release the spring-loaded hinged door, and the RODEO™ de-orbit wing will deploy.
 - Deployment occurs via the single-degree of freedom composite roll-out boom that is restrained by the hinged door of the RODEO™ canister.

Scale-able & Modular Deployable Booms

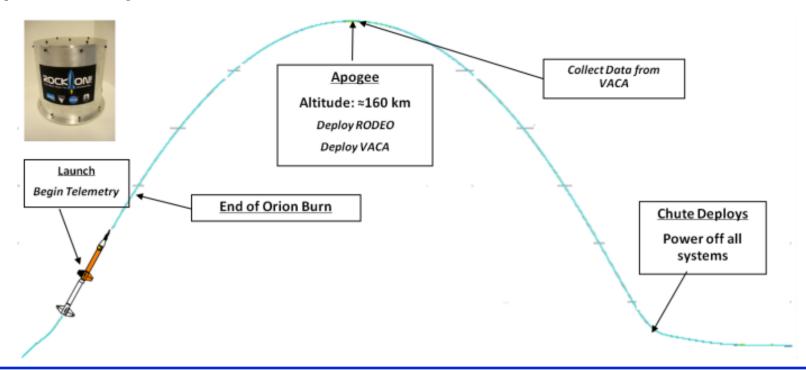
CTD has developed a family of boom configurations that can meet most mission needs

- Size
 - 0.25" to 10" diameter
 - Up to 75ft (22m) in length
- Architecture
 - Open, overlapped, Slit-lock, zipper
- Deployment method
 - SMP, motorized, strain energy driven

Sizing Analysis Summary

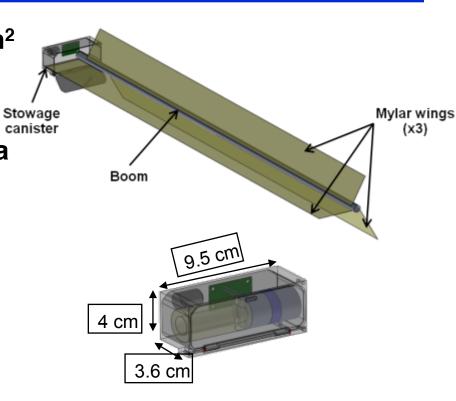
System		Satellite Mass (kg)	RODEO Area*	
			25 years	5 years
3U CubeSat	0.10 0.34	6.00	0.150 m ²	1.16 m ²
Nanosatellite	0.204 0.204	15.0	0.526 m ²	3.23 m ²
ESPA-Class Small Satellite	0.464	100	3.74 m ²	27.85 m²

^{*}Assumed no other deployables; Random tumbling; Orbital Eccentricity = 0; Orbital Inclination 27 deg.


RODEO Mass & Volume

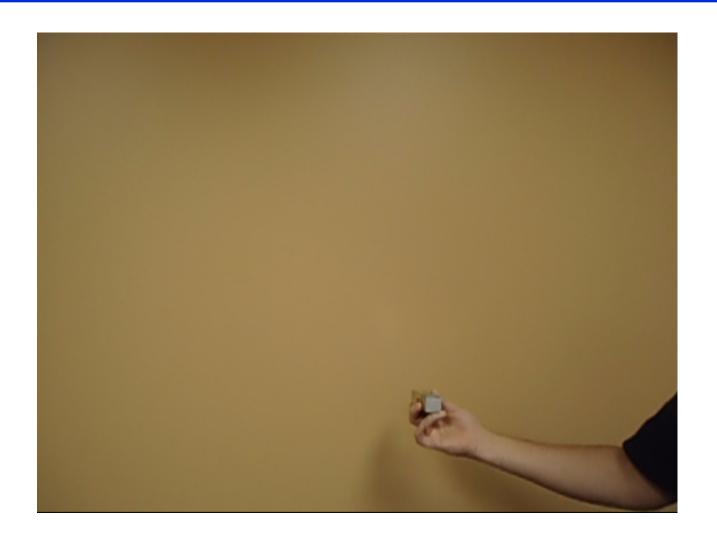
Catallita	RODEO Performance Metrics		
Satellite	Stowed Volume	System Mass	
3U CubeSat (6kg)	$140~\mathrm{cm^3}$	96 g	
Nanosatellite (15kg)	$175 {\rm cm}^3$	131 g	
Small Satellite (100kg)	$270~\mathrm{cm^3}$	472 g	

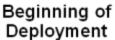
RocketSat-8 Flight Experiment


- Eighth RocketSat student project at the Colorado Space Grant Consortium (COSGC) since the program began in 2006
- Sub-orbital rocket launched out Wallops Flight Facility in August 2012
- Launch achieved 180 seconds of stable microgravity at an altitude of approximately 160 km

Flight Configuration

- Flight configuration provides 0.15m²
 - Sufficient area to de-orbit a 3U CubeSat in 25 years
- Three wings 120° apart provide area in multiple planes
- Wings wrapped around to one side of boom for stowage



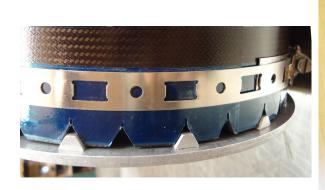

Deployment Video

Flight Test

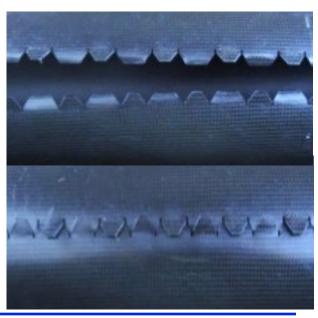
Mid-Deployment

Fully Deployed

- Full deployment achieved
- Deployment was off-nominal
 - Moisture absorption due to extended exposure (a few weeks) to extremely high humidity prior to launch
 - Would not be an issue for orbital flight

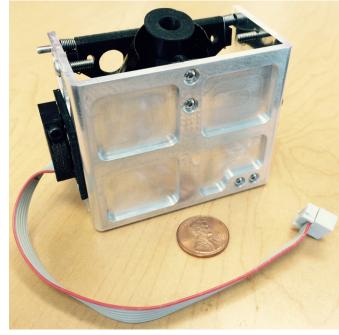

Recent Improvements

- Alternative polymer matrix used in composite boom
 - Higher glass transition temperature
 - Low moisture absorption and reduction of moisture-induced effects
- Incorporation of Slit-Lock[™] for improved stiffness and stability
- Root-rolled instead of tip-rolled boom design
 - Both motor-driven and strain-energy driven designs demonstrated


Slit-LockTM

- Results in a closed cross-section that improves performance
- Significantly increases bending & torsional stiffness/stability
- Edge features interlock upon deployment and remain engaged over all temperature ranges & loading cases
- Design provides a positive closing force at seam during the entire deployment
- Notches are "keyed" in the deployment mechanism to prevent "blooming", provides precise rate control and enables high axial loads to be driven into boom

US Patent #8,863,369



Prototype Hardware

- Prototype has been fabricated
 - 0.5" diameter, 1.5m long
 - Incorporates Slit-lock
 - Motor driven
 - 175g, 3" x 2.5" x 1.5" envelope
- Technology can be used for a wide range of applications
 - Deployment actuator and structure for solar array, solar sail, drag sail, etc.
 - Gravity gradient boom
 - Instrument boom
 - Etc.

Conclusions

- Most responsible and pro-active way to mitigate orbital debris is to incorporate a de-orbiting device
- RODEO leverages lightweight, morphing composite structures to enable a low cost, proven, de-orbit solution
- RODEO deployed successfully from a sounding rocket as part of the Rocket-Sat X flight experiment
 - Off-nominal deployment caused by moisture saturation, would not be an issue for orbital flight
- Deployable boom technology is being improved upon and can be used for a wide range of applications
- Please come by CTD's booth (#50) at SmallSat conference to see some cool hardware!