my_EPP

External Payload Platform

A new Cubesat testbed and payload hosting platform on the International Space Station with reliable fast-track and low-cost mission scenario

Dr. P. C. Steimle*, K. Kuehnel**, K. Woellert***

- * Airbus Defence and Space, Bremen, Germany
- ** Airbus DS Space Systems Inc., Houston, Texas
- *** NanoRacks LLC., Washington D. C.

29th Annual AIAA/USU Small Satellite Conference, August 8 – 13, 2015 12th Annual CubeSat Developers' Pre-Conference Workshop

Why being outside ISS?

Controlled environment

Commanding of payload from your desk

Microgravity

Radiation environment of low Earth orbit

Vacuum environment

Thermal environment

View on Earth

View to the stars

External Payload Platform on JEM-

August 2015

 \bigcirc

NANORACK

External Platform

Up to 9 4U cubesat size payloads outside the ISS Standard mission duration 15 weeks Excellent viewing conditions for Earth observation Full end-to-end mission service

JAPAN

External Platform System Design

Standard payload provisions		
Voltage	28 Vdc ± 2 V or 120 Vdc as option	
Total power	30 W at 28 Vdc	
Maximum current	2 A	
USB 2.0 bus	5 Vdc / 500 mA, non-switchable	
Total payload data rate	up to 8 Mbit/s	

- EP provides all functions of the conventional spacecraft bus
- Ideal platform for small size hosted payloads
- No further subsystems necessary
- Improved anomaly resolution by human in the loop

External Platform Payload Configurations

E & SPACE

External Platform End-to-end Service

External Platform End-to-end Service

- End-to-end communication with your payload covered by the EP Service
 - Console on your own desk
 - Near-real time data link available
- On-board data management by EP-DMS
 - Data storage in NanoRacks' EXPRESS rack in JEM-PM
 - Handling of downlink data by ISS data management system
- Complete ground segment provided by ISS
 - Communication front end MSFC

EPP-based In-orbit Testing & Demonstration

Technology Demonstration

- TRL 1 Basic principle
- TRL 2 Technology concept
- TRL 3 Experimental proof of concept
- TRL 4 Technology validated in lab
- TRL 5 Technology validated in relevant environment
- TRL 6 Technology demonstrated in relevant environment
- TRL 7 System prototype demo in operational environment
- TRL 8 System complete and qualified
- TRL 9 System in operational environment

- Accelerated improvement of available technologies, system concepts and abilities
- Reduction of the time to market of spacerelated products
- Cost-optimization of mission scenarios
- Fast demonstrations of mission scenarios
- Test your satellite components, sensing concept etc. at low risk and low cost

EPP-based Remote Sensing

ISS attitude-related parameters

Nominal attitude	Z Nadir (Only 6 hours per year in other z-orientation)
Operational attitude	Roll, Yaw ±15 deg Pitch +10 to -20 deg
Attitude accuracy	±3.5 deg per axis
Attitude estimation	0.5 deg per axis (3 sigma)
Attitude stability	0.01 deg/s per axis (3 sigma)

EPP-based Remote Sensing

	ISS orbit-related parameters		ers
Earth visibility	34	Orbital inclination	51.65 deg
ISS passes over 85% of the surface and 95% of the world's populated	A Real	Perigee / apogee altitude	413 km / 417 km
landmass every 1 to 3 days.		Orbital period	92.89 minutes
		Beta angle variation	-75 to +75 deg
		Orbit position error	6 m
	- Contractor	Semi-major axis error	20 m
		Revisit frequency	1 – 3 days depending on latitude
ISS Nadir range		8	Latitude = -51.65°

External Platform Field of View

Japanese Exposed Facility (JEM-EF) in currently manifested payload configuration.

[National Aeronautics and Space Administration, JEM EFU Site 4 NanoRacks FOV View, Manipulator Analysis Graphics and Interactive Kinematics (MAGIK) Team, AI 2610, 2012]

External Platform Field of View

Fisheye Field of View at JEM-EF site 4 towards ISS port side with other payload on JEM-EF Site 8.

[National Aeronautics and Space Administration, JEM EFU Site 4 NanoRacks FOV View, Manipulator Analysis Graphics and Interactive Kinematics (MAGIK) Team, AI 2610, 2012]

External Platform Payload Attitude Stability

Conclusion and outlook

Type of mission	External Platform Opportunity	
Remote Sensing	 Nadir view with 40 deg swath Unconstrained view from wake to ram direction Maximum contaminant deposition 1x10⁻¹⁴ g cm⁻²s⁻¹ 	
Use of microgravity	Quality up to 10 ⁻⁶ g on JEM-EF with single distortion effects	
Use of vacuum	Vacuum quality approx. 10 ⁻⁵ Pa depending on ISS orbit altitude and solar activity	
Meteoroids, space debris monitoring	JEM-EF site no.6 can be made available for ISS ram view	
Antenna testing and RF utilization	Frequency coordination with ISSITU license necessary	
Propulsive element testing	Pressure vessel use not restrictedNo toxic propellants	

- Flight hardware is ready for hand-over from Airbus DS to NanoRacks
- EPP manifested for upload with HTV-5 in August 2015
- First payload mission preparations have started
- Airbus DS will provide a Flight Environment
 Verification for permanent installation on the EPP, data will be made available
 - Acceleration in 3 axes
 - Temperature
 - Radiation

EPP will be ready for service very soon!

What our launching customers do ...

Customer	Payload	Mission scope
Yosemite Space	GumstixTM	 Principal investigator Kathleen Morse, Ph.D. Space-based radiation studies to investigate the feasibility of the Gumstix Computer On Module (COM) technology for use in non-critical computationally intensive space applications
Florida Institute of Technology	Development and Deployment of Charge Injection Device (CID) Sensors for Space-Based Extreme Contrast Ratio Imaging	 Principal investigator Daniel Batcheldor, Ph.D. Space-based test of an innovative and novel Charge Injection Device (CID) imager technology in the space environment
A-76 Technologies	Characterization of A-76 Corrosion Inhibitors in the Space Environment	 Characterize effectiveness of A-76 corrosion inhibitors and lubricants for metals in the space environment
Honeywell and Morehead State University, Space Sciences Center	TRL7 Validation of Dependable Multiprocessor (DM) Technology	 Principal investigators John Sampson, Ph.D., Benjamin Malphrus, Ph.D. Benchmark performance and radiation-induced computational errors of DM Technology while conducting computationally intensive processing in the space environment
Arquimea Ingeniería, S.L.U. (Spain)	REsettable Hold-Down and Release ACTuator (REACT)	 EU Horizon 2020 funded project with multiple European project partners (Arquimea Ingeniería, S.L.U., EADS CASA Espacio, Surrey Satellite Technology Ltd., AVS, Universidad del Pais Vasco, ESR Technology Ltd., Spacetech GmbH) In-orbit test of SMA-based actuators

NANORACKS

AIRBUS

 \bigcirc

Thank you for your attention!

Contact

Ron Dunklee CEO, Airbus DS Space Systems Inc. Email: <u>rdunklee@airbusdshouston.com</u>

Dr. Per Christian Steimle ISS Commercial Applications Airbus Defence and Space, Bremen, Germany Email: <u>per-christian.steimle@airbus.com</u>

Kirk Woellert External Payloads, NanoRacks LLC. Email: <u>jmanber@nanoracks.com</u>

