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Introduction

The Following are true regarding state of CubeSat Development

I The number of cubesats per deployment has been steadily increasing
in recent years, including cubesats to deep space.

I Autonomous Ground Station Networks with software-defined radios
(SDRs) have become popular for decoding.

I Orbit Determination is difficult for large number of satellite
deployments, and generally accomplished using linearized estimators
and filters.
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Introduction

However,

I Orbit Determination using ground stations require
I Requires an initial estimate in the linear region of the orbit

determination system
I Hard to generalize for arbitrary gravitational potential maps
I Stochastic parameters need to have “nice” probabilistic assumptions -

such as gaussian probability distributions on process noise

I Autonomous orbit determination for multiple CubeSats over ground
station networks is relatively unexplored ground

Robust Orbit Determination Introduction 5 / 24



Motivation

With these considerations, would it be possible to

I Identify spacecraft whose communication characteristics are known
a-priori

I Perform Orbit Determination whose orbit characteristics do not have
nice initial estimates and whose stochastic parameters have
distributions which may be non-parametric.

I Generalize such a system to operate over nG ground stations, over NP

passes.

Essentially, can we build an autonomous system that “learns” to do
orbit determination?
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Problem Statement

I Consider Two Spacecraft, labeled −1, 1.

I Orbit parameters Γj = {aj , ej ,Ωj , Ij , ωj ,Mj}, j = −1, 1.

I Say we know that these orbit parameters are drawn from a probability
distribution PΓj

and that Γj are bounded.
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Problem Statement

I Spacecraft RF transmissions have certain characteristics such as
modulation, center frequency instability, randomness of data, etc,
which are known prior to launch.
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I Observe transmissions from nG ground stations over time period Tp,
and extract “feature vectors” from the received signal.
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Problem Statement

Assumptions

I The received RF signals are distinguishable almost everywhere.

I There exists a model of the system such that given an example orbit,
example transmissions of these spacecraft can be generated (for
example, a perturbation model and orbit propagator).

Given such a system, for any nT test feature vectors, can we classify
transmissions and estimate the orbits Γ−1, Γ1?
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Learning Approach

I Generate n training datasets {{xij , yij}nij=1, γi ,−1, γi ,1}ni=1
I γi,−1: example orbits of the first spacecraft
I γi,1: example orbits of the second spacecraft
I xij : RF Feature Vectors of a spacecraft in the ith orbit
I yij : label of xij

I Training datasets can take into consideration very subtle variations in
RF transmission characteristics, drifts in center frequency, variation of
transmission rates etc.

I PΓ1 ,PΓ−1 induces a probability distribution on the space of probability
distributions of the RF Feature Vectors.
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Kernel Methods

Kernel Methods have become popular in learning theory due to their
ability to estimate non-linear functions.

I S: Compact Space

I k : S × S → R, a symmetric, positive definite function

I Reproducing Kernel Hilbert Space(RKHS): k generates a function
space1 Hk such that ∀f ∈ Hk , s ∈ S, f (s) = 〈f , k(·, s)〉

I When universal kernels are used, the search space is a dense subset of
C (S), the space of all continuous bounded functions on S.

I They can also be used to embed probability distributions on S onto
Hk , Φ(PS) =

∫
S k(·, s)dPS

1Nachman Aronszajn. “Theory of reproducing kernels”. In: Transactions of the
American mathematical society (1950), pp. 337–404.
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Classification

I Say every feature vector represents only one RF source.

I One of the characteristics of RF transmissions is that the center
frequency varies due to Doppler Shift, and therefore their signals can
overlap.

I When Transmitting Sources are identical in all aspects except
PΓ−1 ,PΓ1 , even to separate single RF transmissions, we consider all
the RF transmissions received over the entire time period (i.e, the
probabilistic embedding)

I This leads to Transfer Learning2

I The sources are separated by a hyperplane in this infinite dimensional
space.

2Gilles Blanchard, Gyemin Lee, and Clayton Scott. “Generalizing from several related
classification tasks to a new unlabeled sample”. In: Advances in neural information
processing systems. 2011, pp. 2178–2186.
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Transfer Learning

I For (Γ−1, Γ1) ∈ (J 2,F⊗2
J ), (X ,Y ) ∈ (X × Y,FX ⊗FY), A probability

distribution PΓi on Γi , i = −1, 1, induces λ on the space of probability
distributions, BX×Y such that

P(i)(X ,Y |Γ1 = γi,1, Γ−1 = γi,−1) ∼ λ = (PΓ1 × PΓ−1 ) ◦ µ−1

xij , yij ∼ P(i)(X ,Y |Γ1 = γ1,i , Γ−1 = γ−1,i )

µ is a function of Γ−1, Γ1 and a measure on BX×Y . µ−1 is its pre-image.

I Due to this, Transfer Learning can be applied, therefore, for a given loss
function l , it is possible to find a function h : X × BX → Y such that
y = sign(h(PX ,X ))).

I Let Hk be the RKHS associated with kernel k1 : X × X → R. For Φ(BX ),
the set of mean embeddings associated with BX , let HkP be the RKHS
associated with the kernel kP : Φ(BX )×Φ(BX )→ R (The mean embedding
is defined as Φ(PX ) =

∫
X k2(·, x)dPX ). We seek an estimate hH of h such

that the following criteria is satisfied

hH = arg min
h∈Hk̄

EPXY∼λ,(X ,Y )∼PXY
[L(h(Φ(PX ),X ),Y )] (2)
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Orbit Determination

I When the following exist
I An invertible mapping between the distribution of the feature vectors

and the distribution of the center frequency in TP .
I A unique mapping between the orbit parameters in the support of PΓ

and the center frequency, given a communication system.

Then, there exists a mapping between the distribution of the feature
vectors and the orbit parameters.

I When the kernel used in an embedding is universal, the mapping
between the RKHS and the Probability distribution is unique

I Therefore, when the above two criteria are satisfied, there exists a
mapping between the kernel embedding of the RF feature vectors and
the orbit parameters.

I Use a second universal kernel operator over the space of embeddings
to estimate this function!

Robust Orbit Determination Machine Learning Approach 16 / 24



Distribution Regression

I PΓ induces a probability distribution ν = PΓi
⊗ δ on (Γ−1,PX |y=−1)

and on (Γ1,PX |Y=1).

I We estimate a function3 fl such that, for the mean embedding
Ψ(PX ) =

∫
X k(·, x), dPX , and for the kernel operator

K : Ψ(PX )×Ψ(PX )→ J ,

f̂ξ2,l = arg min
fl∈HkP

E(‖fl(Ψ(P̂X ))− γl‖2
J ) + ξ2‖fl‖2

HkP
(3)

For l = −1, 1

I This is an estimate of the function which maps the embedding of RF
Feature Vectors to the orbit parameters!

I Applied to the test dataset to determine orbits!

3Zoltán Szabó et al. “Consistent, two-stage sampled distribution regression via mean
embedding”. In: arXiv preprint arXiv:1402.1754 (2014).
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Results - Classification

Two Spacecraft with BPSK transmissions, 10Kbps bandwidth, center frequencies

separated by 10 Khz at 437.5MHz, signals received at 10dB SNR at one ground

station over one pass. Synthetic Data, feature vectors were RF Signatures (3

dimensional) by Bkassiny et. al4

−0.5 0 0.5 1
0

0.5

1
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

RF Signature − scaled

 

Frequency − scaled

Support Vectors for datasets in red

 

T
im

e
 −

 s
c
a
le

d

Support Vectors
Class −1
Class 1

Classification Method % Error
Transfer Learning 2.93

Pooled Classification 6.83
Training: 40 orbits
Testing: 10 orbits
SVM with bias

4Mario Bkassiny et al. “Blind cyclostationary feature detection based spectrum
sensing for autonomous self-learning cognitive radios”. In: Communications (ICC),
2012 IEEE International Conference on. IEEE. 2012, pp. 1507–1511.
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Results - Orbit Determination

One Spacecraft with BPSK transmissions, Two Ground Stations (Ann
Arbor and Chicago) ∼ 10dB SNR at receiver in an AWGN channel,
Receiving over two passes (2 hour interval), Synthetic Data. Probability of
transmission 0.03, uniform over the passes in TP . Mean Motion was kept
constant at 14.7732. Priors:

e ∼ 10≤e≤1×10−3(N (4× 10−4, 1× 10−8) +N (4× 10−4, 1× 10−8))

Ω ∼ N (3π/2, (π/36)2)

I ∼ N (π/4, (π/182))

ω ∼ N (16π/9, (π/18)2)

M ∼ N (π/4, (π/1800)2)

Training with 1080 orbit insertions, testing with 20 orbits.
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Results

Results based on a small cross validation set indicates initial convergence
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Future Work

I Upper and Lower bounds on performance of successive classification
and orbit determination.

I Integration of two loss functions into one single machine learning
system.

I Experimental Implementation into networked global ground stations.

I Extension to Geolocation systems.
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Thank You

Questions?
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