A Low Power Optical Communication Instrument for Deep-Space CubeSats

Paul Serra, Nathan Barnwell, John W. Conklin

UF FLORIDA

Motivation and Objectives

Objectives: Demonstrate optical communication with small volume, low power.

- 2U, ~5 W, 10s Mbps
- Proof of Concept (TRL 1 to TRL 3)
- Initial studies and feasibility in 2014.
- Prototype realization started in February 2015.

Virtex 5 QV on M-Cubed/COVE2

M-slot Differential Pulse Position Modulation

- Time is divided into slots of size τ .
- Guard time T_g placed after every pulse to ensure that laser is ready for next pulse.
- Pulse rising edge placed in one of *M* slots, transmitting one of *M* possible symbols.

Optimal Number of Slots, M

An optimal *M* is chosen from required pulse energy and channel noise:

Requirements:

Structure

Two subsystems:

- Software Defined Pulse Modulator (SDPM)
 - Generate electric pulses according to the modulation scheme.
- Master Oscillator Power Fiber Amplifier (MOPFA)
 - Transform electric pulses into amplified light pulses.

Hardware: Time Standard

Characteristic	Chip Scale Atomic Clock (CSAC)
Standard	Cesium
Allan Deviation (time error)	3.3x10 ⁻¹² @ 6000 sec (20 nsec)
Power	0.12 W
Mass	35 g
Size (LxWxH)	40.64 x 35.31 x 11.42 mm

CSAC in a CubeSat packaging

Hardware: FPGA

- Timing performance in FPGAs are very dependent of the platform:
 - FPGA selection must be done early.
 - Complete revalidation of timing section required if FPGA changes.
- Flash-based FPGA:
 - Reprogrammable: Allows part-to-part calibration.
 - Flash storage: No configuration upsets; No external programing.
 - Rad Tolerant version with same production process and structure.

Modulator Data Flow

Environmental Compensation

- Temperature, voltage, radiation, aging \rightarrow chain delay variations.
- Delay Locked Loop (DLL) measures delay variations.

Environmental Compensation

Clock

Initial Results

- Result from DLL circuit with 65280 samples per time (3×10⁶ samples in 40 ms)
- Resolution of DLL oscillator: 1 ps typical, 2.3 ps worst case; Range: 4 to 24 ns.

Master Oscillator Power Fiber Amplifier

Erbium doped Fiber Laser

- High gain with low average power
- Maintains good beam quality
- Solid-state
- Compact

Conclusion

- Completed:
 - Automated modulator test bed
 - Delay chain design
 - Optical components selection and purchase

- Future work:
 - Low resolution data loopback with optics by August
 - Timing characterization in rad tolerant parts

