

### Advanced Electrical Bus (ALBus) CubeSat Technology Demonstration Mission

April 2015

#### David Avanesian, EPS Lead Tyler Burba, Software Lead

Glenn Research Center



### Outline

- Introduction
- Systems Engineering
- Electrical Power System
- SMA Technology
- Future Work
- Questions

Glenn Research Center



# INTRODUCTION



### Introduction

- Initiated as a developmental opportunity
  - 11 early career employees
  - Emphasize hands-on flight project experience and flight hardware development
    - Scope project appropriately to allow hands-on development of flight hardware
    - Document lessons learned
- Stakeholder Requirements
  - Provide flight project and flight hardware development
  - Work towards a Ship Sat Demonstration mission
- Started Pre-Phase A work in Aug/Sept 2013
  - Informally surveyed GRC community for interest in flying CubeSat missions
  - Compiled potential mission and payload concepts and high level needs
- Address CubeSat capability needs required for advanced payload/mission concepts, including ShipSat
  - Phased approach to address capability needs in a series of developmental flights
  - First flight demonstration of power management capability



## **Project Needs, Goals and Objectives**

**Needs Statement(s)** 

- 1. Early career employees in technical fields need an opportunity for a hands-on flight project experience.
- 2. CubeSats need an advanced power system capability with standardized interfaces and regulated bus voltage in order to reduce development time and costs by reducing the need to design payload/mission specific power systems.

| Goals                                                                                 | Objectives                                                                                                                 |  |  |
|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--|--|
| Maximize hands-on flight hardware development and integration.                        | Use COTS parts for component level only. Team members perform all subsystem and system level design, integration and test. |  |  |
| Develop a standardized electrical power system to meet CubeSat payload/mission needs. | Provide an EPS with standard, simplified interfaces to CubeSat payloads and subsystems.                                    |  |  |
|                                                                                       | Develop an EPS that fits in 1 U volume.                                                                                    |  |  |
|                                                                                       | Provide a 100 W capable power management system.                                                                           |  |  |
| Advance the state of CubeSat power management capability.                             | Demonstrate regulated high power bus.                                                                                      |  |  |
|                                                                                       | On-orbit demonstration of technologies required for a 100 W system.                                                        |  |  |
| Utilize NASA GRC core competency expertise and technologies.                          | Demonstrate deployable solar array mechanisms utilizing GRC shape memory alloy (SMA) materials.                            |  |  |



# **SYSTEMS ENGINEERING**



### Requirements

- Requirements obtained from several sources:
  - Self-generated (from project needs, goals, and objectives)
  - NASA launch service providers (LSP) per CubeSat Launch Initiative (CSLI)
  - Cubesat deployers:
    - P-POD (as launch vehicle secondary payload)
    - Nanoracks (from ISS)
  - In case of requirement overlap, more stringent req't adopted to maximize launch opportunities and mission flexibility

#### 61 total top level requirements identified

- Additional requirements for small payloads and battery
  - safety aboard ISS for Nanoracks deployment opportunity
  - Two TBXs remain, both related to EPS capability



## Key Performance Parameters

| Title              | Requirement                                                                                |
|--------------------|--------------------------------------------------------------------------------------------|
| Power Output       | System shall provide no less than 100W power to a target load for no less than TBD minutes |
| EPS Efficiency     | Power system efficiency shall be no less than 85%                                          |
| Voltage Regulation | The EPS shall regulate voltage to ±1% of the nominal main bus voltage output               |
| EPS Volume         | The EPS shall not exceed a volume of 1U (10x10x10cm)                                       |
| Mass               | Each triple (3U) CubeSat shall not exceed 4.0 kg mass                                      |

Design expected to meet all key performance parameters

Glenn Research Center

#### System Definition

#### Attitude Determination and Control

Velocity Vector Aligned Aerostabilization

#### **Avionics and Software Development**

Edison uController – Data Texas Instruments MSP430 – EPS Tasking and Control

1-U Volume

#### **PMAD**

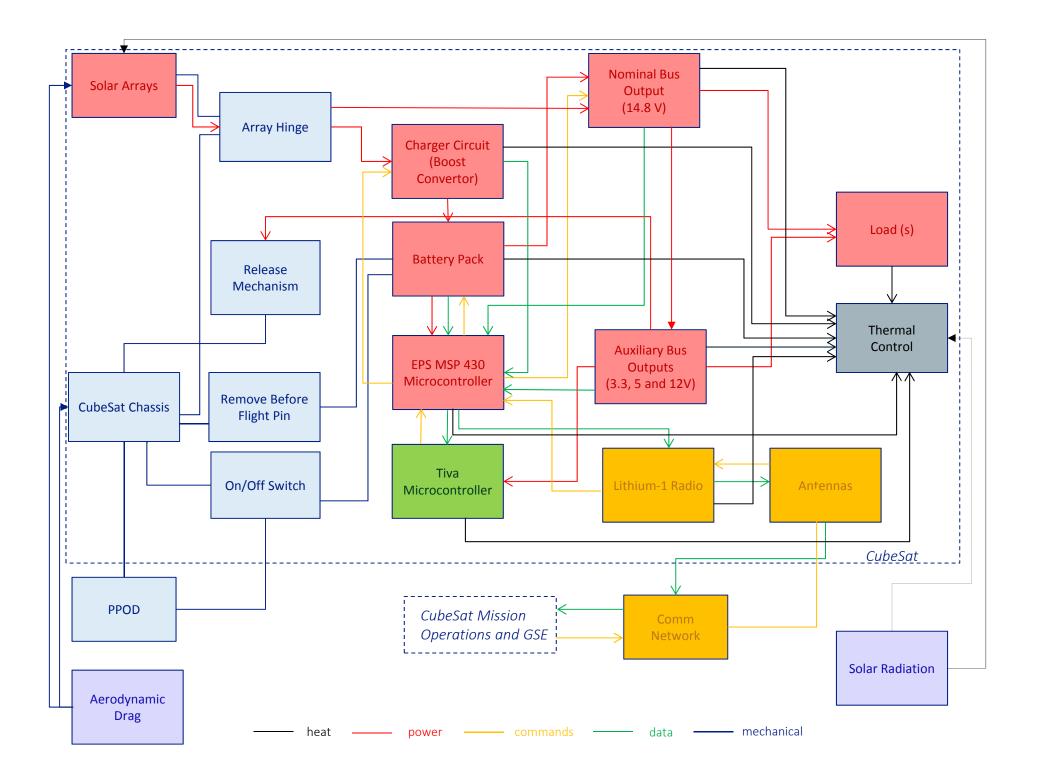
Battery Charging Circuit 14.8 V, 6.8 A Bus 3.3V, 5V and 10 W Auxiliary Bus Energy Storage GOM Space Battery Packs: 80 W-hr ISS Qualified

\*Red text indicates in-house GRC design and development

Passive Thermal Control

Body Mounted Arrays – radiative surface Exploring dedicated experimental radiator with YSU

#### **Energy Generation**


Deployable Solar Arrays
Existing Body Mounted Arrays
16 W Orbit Avg Generation

#### **Structure and Mechanisms**

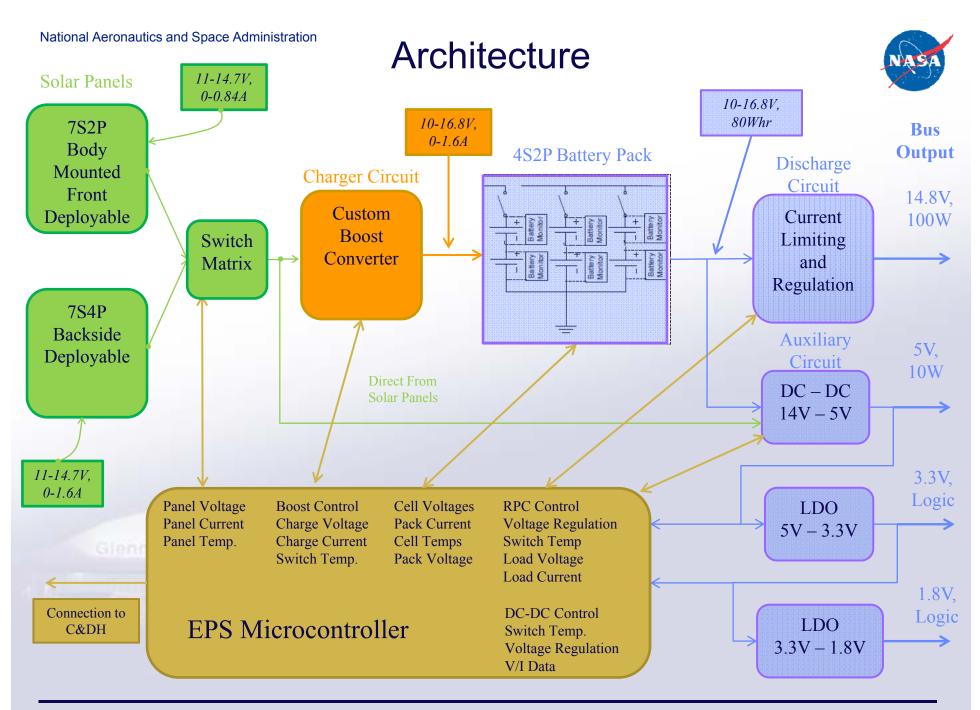
Shape Memory Alloy Mechanisms •Super-Elastic Deployable Array Hinge •Activated Deployable Array Release Mechanism Existing 3U Pumpkin Chassis

#### Communications

Standard Lithium-1 UHF Radio Custom Phasing Board and Antennas UHF Ground Network

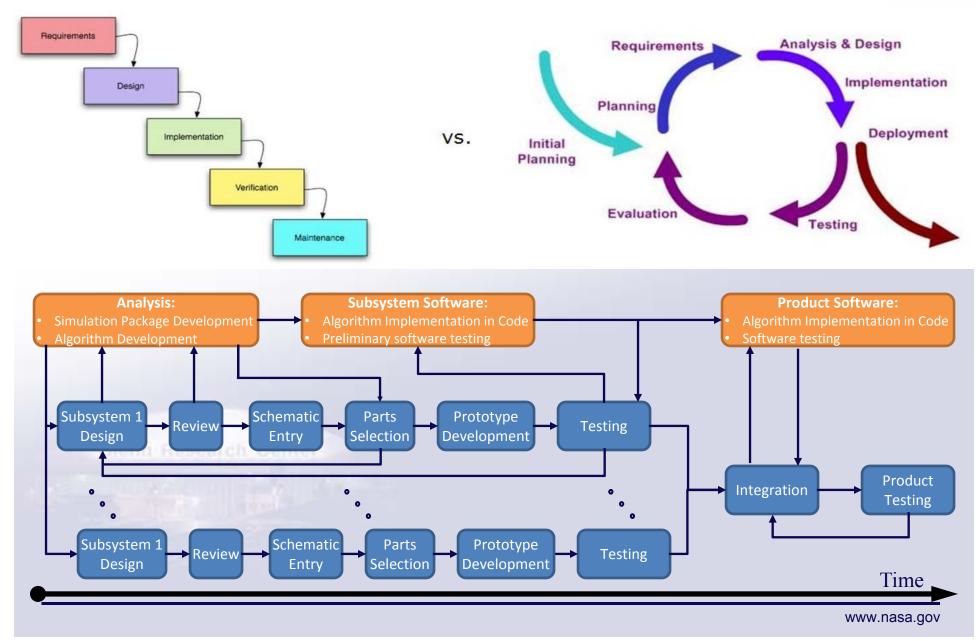





## **5.1 ELECTRICAL POWER SYSTEM**

Glenn Research Center




#### Requirements

- System shall provide no less than 100W power to a target load for no less than TBD minutes.
- System shall have TBD ms/us transient performance with 100W continuous power output
- Power system efficiency shall be no less than 85%.
- System shall have a regulated main bus voltage of 14.8 V nominal.
- EPS shall regulate voltage to 1% of nominal main bus voltage output
- Main EPS shall be able to fit in 1U volume or less.
- EPS shall provide multiple auxiliary power busses (3.3V, 5V, 10W)
- Battery Temperature Range:
  - Charge: -5C to 45C
  - Discharge: -20C to 70C





#### PMAD: Analysis/Development Plan





# 5.2 STRUCTURES AND MECHANISMS - SMA





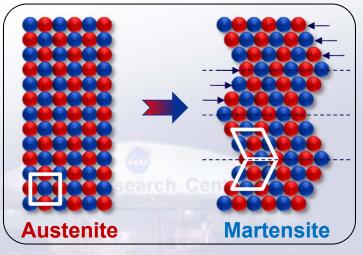
## Technology Infusion - Shape Memory Alloys

- <u>SIZE</u>: Need for smaller, compact and cost effective mechanisms for deployment of solar arrays
- <u>FUNCTIONS</u>: Load capability, multifunctional use of mechanisms (hinging and structure support)
- <u>MISSION SAFETY</u>: Repeatable, and reproducible deployment, clean and debris-less
- As part of the CubeSat project, we are designing and developing new mechanisms based on SMAs that have added benefits than currently used technologies.
- Current methods:
  - Nichrome burn wire mechanism (Adam Thurn NRL) for deployment. This is a one time use and can't be ground tested (also a source of failure).
  - Conventional metallic spring hinge mechanism



### Mechanisms Design Overview - Hinge

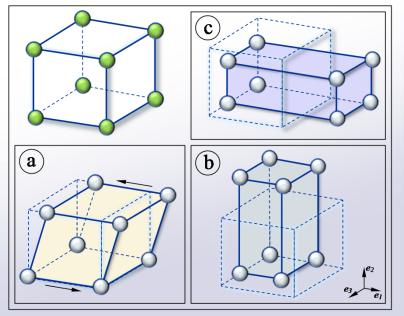
#### **Features**


- 1. Utilizes Glenn Shape Memory Alloy (SMA) in a new application to advance technology
- 2. Three SMAs replace torsion springs, redundant so if one fails the other one can deploy the arrays (1-2 in-lbs moment each)
- 3. Hinge pin and hinge have dual rotating surfaces (pin can rotate and hinge can rotate).
- 4. SMAs transmit power from the solar arrays to the chassis eliminating a wiring harness.
- 5. Hard stop on hinge bracket keep the arrays at the desired deployment angle.
- 6. Two locking detent mechanisms per solar array for redundancy.

## Shape Memory Alloys (SMAs)

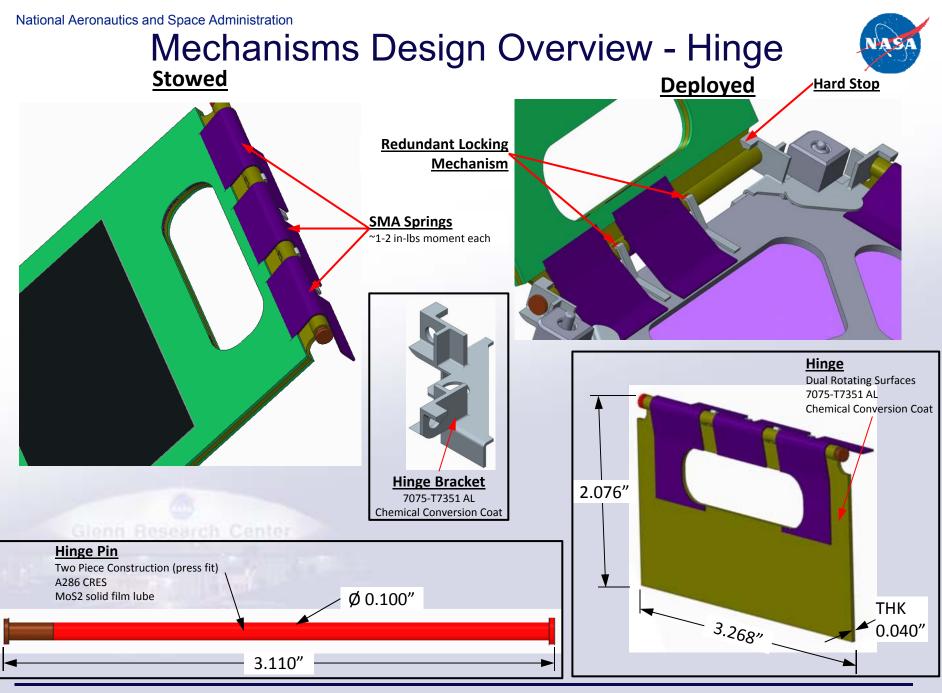


- Shape memory alloys (SMAs) exhibit a solid-to-solid, reversible phase transformation
- Can accommodate large strains (e.g., 8% strain)
- Shape change can generate stresses (up to 500 MPa)


#### **Simplified 2D**

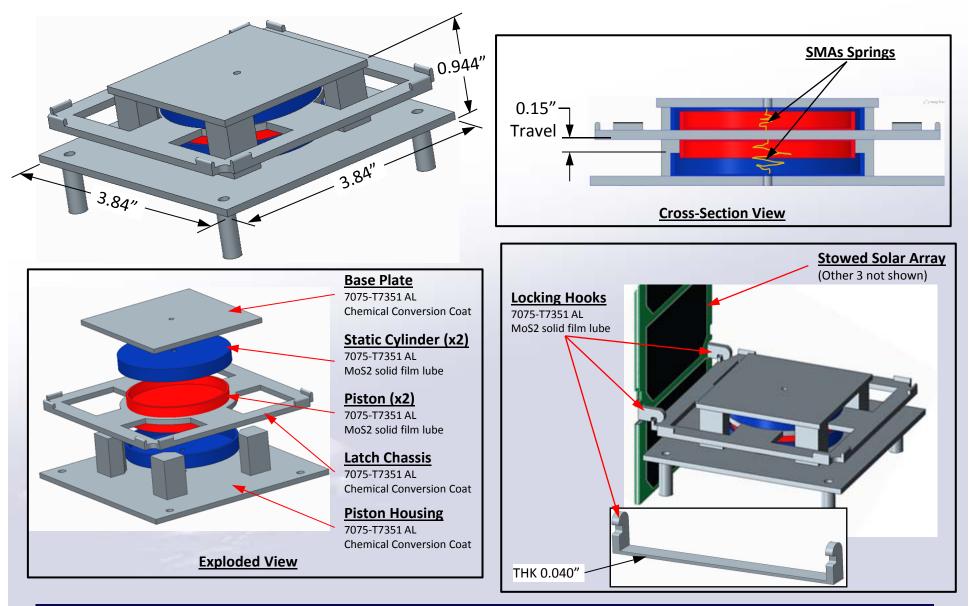


#### > How?


- **1.** Bain strain  $\rightarrow$  (lattice deformation)
- 2. Lattice invariant shear  $\rightarrow$  (accommodation)

#### **Variant selection**










#### Mechanisms Design Overview – R&R







### Mechanisms Design/Analysis

 Deployable Array Retention and Release Mechanism (Shape Memory Alloys)
"Deployed" "Stowed "

| NiTi thermo-elastic properties       |                       |       |     |  |  |
|--------------------------------------|-----------------------|-------|-----|--|--|
| Shear modulus                        | G <sub>A</sub>        | 20    | GPa |  |  |
|                                      | $G_R$                 | 8     | GPa |  |  |
| Poisson's ratio                      | n                     | 0.413 | _   |  |  |
| Transformation temperatures (± 2 °C) |                       |       |     |  |  |
| Martensite start                     | Ms                    | 71    | °C  |  |  |
| Martensite finish                    | <i>M</i> <sub>f</sub> | 55    | °C  |  |  |
| Austenite start                      | As                    | 92    | °C  |  |  |
| Austenite finish                     | $A_f$                 | 105   | °C  |  |  |





- Need to provide 0.5" travel
- Design for a redundant system
- Activation (deployment) above 95 °C)
- Release all 4 panel with one motion



# **FUTURE WORK**

### **Current/Future Work**



- Submitted a proposal to CubeSat Launch Initiative.
- Proposal was recommended for selection to participate in the program and is currently selected 3<sup>rd</sup> out of 14.
- PDR is scheduled for June 2015
- Procured solar cells for deployable arrays and identified the solar panel manufacturers
- Identified COTS subsystem manufacturers and lead times.
- In the process of prototyping both mechanical and electrical systems.



# **QUESTIONS?**