CubeSats and Science Requirements Driven Deep Space Missions: A Marriage made in Heaven?

Example: IceCube Lunar Orbiter with BIRCHES (Broadband InfraRed Compact High-Resolution Exploration Spectrometer) NASA NextSTEP (Next Space Technologies for Exploration Partnerships) LunarCubes Mission and Instrument Concept

P.E. Clark, IACS/CUA/NASAGSFC and Flexure Engineering, Science PI

B. Malphrus, Morehead State University, Pl

Morehead State University: B. Twiggs, Jeff Kruth, Kevin Brown, R. McNeill, B. Kroll NASA/GSFC: A. Mandell, R. MacDowall, C. Brambora, D. Patel, S. Banks, D. Folta, P. Calhoun, P. Coulter Busek: K. Hohman, V. Hruby Next Step Selectee Announced March 30, 2015!

Why Lunarcubes?

Using the Cubesat paradigm to build user requirements driven 'pathfinders' for low-cost multiplatform mission concepts that will ultimately provide next generation exploration through the use of temporal and spatially distributed measurements.

Providing access to deep space via the Moon as nearby analogue, technology testbed, and gateway to the solar system.

Providing a low-cost alternative for high science yield missions at a time of declining funding and increasing costs for conventional missions.

Taking advantage of the decade long evolution of the cubesat model from standardized kits to science-driven, multi-institutional, multi-platform collaborations for LEO applications.

Examining the use of cubesat hardware/software for missions that are a representative cross-section of lunar, Mars, and other applications at varying degrees of difficulty (flyby, probe, orbiter, lander).

identifying modifications and new technology needed to support a science-driven deep space mode.

Looking for NASA to expand the CubeSat Launch Initiative which provides launch opportunities for cubesats to LEO as secondaries at no cost, to GEO and beyond.

designing a deep space prototype bus, and prototype for a lunar orbiter missions.

Building on the exploding interest in cubesat as seen in growing popularity of our LunarCubes Workshops over the last 3 years.

23/15

Clark etal CDW Spring 2015 IceCube

2

Deep Space CubeSats to date:

Deep Space CubeSats And Challenges

Announced: INSPIRE (2 3U); 11 EM1 releases (6U) including 3 HEOMD AES selected (Lunar Flashlight, NEA Scout, BioSentinel) plus 8 others TBS (SMD PDS SIMPLEx (1), SMD Heliophysics HTIDS (1), HEOMD NextStep (1), OCT Centennial Challenges (several)); Europa mission secondaries Likely: Surviving GLXP/Catalyst lander deck, leg, or orbit secondaries; Mars mission secondaries; Deep Space Scouts from 100 EM1 proposals pent-up demand

As in NASA's first decade, all 'prototypes' of these 'shoeboxes' must, to get beyond LEO (launch, orbit, orbital formation flying), demonstrate the following:

Operate in Deep Space Radiation Environment Operate in Extreme Target Thermal Environment (particularly the Moon) Manage Deep Space Communication Manage Deep space Navigation and Tracking Perform Deep Space Maneuvers, Orbital Insertion and Orbit Maintenance Manage a variety of onboard propulsion systems: (solar sail, ion drive, microcathode, electrospray) Manage onboard active attitude control systems Perform Onboard Processing Find Capable yet Compact, Low-Cost, Low-power Payloads Harness CubeSat (Class D) development model

Morehead CubeSat Bus

Δ

Science Goals Understanding the role of volatiles in the solar system

- Enabling broadband spectral determination of composition and distribution of volatiles in regoliths (the Moon, asteroids, Mars) as a function of time of day, latitude, regolith age and composition.
- Providing geological context by way of spectral determination of major minerals.
- Enabling understanding of current dynamics of volatile sources, sinks, and processes, with implications for evolutionary origin of volatiles.

IceCube addresses NASA HEOMD Strategic Knowledge Gaps related to lunar volatile distribution (abundance, location, transportation physics water ice).

IceCube complements the scientific work of Lunar Flashlight by by observing at a variety of latitudes, not restricted to PSRs

IceCube versu	s Previous Missions	
Mission	Finding	IceCube
Cassini VIMS,	surface water detection, variable	water & other
Deep Impact	hydration	volatiles, fully
Chandra	H2O and OH (<3 microns) in	characterize 3 µm
M3	mineralogical context nearside	region as function
	snapshot at one lunation	of several times of
LCROSS	ice, other volatile presence and	day for same
	profile from impact in polar	swaths over range
	crater	of latitudes w/
LP, LRO,	H+ in first meter (LP, LEND) &	context of regolith
LEND	at	mineralogy and
LAMP	surface (LAMP) inferred as ice	maturity, radiation
DVNR	abundance via correlation with	and particle
LOLA	temperature (DIVINER), PSR	exposure, for
LROC,	and PFS (LROC, LOLA), H	correlation w/
LADEE	exosphere (LADEE)	previous data

6

- Broadband IR spectrometer with HgCdTe and compact line separation (LVF)
- Compact microcrycooler to ≤ 120K to provide long wavelength coverage
- compact optics box designed to remain below 220K
- OSIRIS Rex OVIRS heritage design

Spectrometer Components

BIRCHES utilizes a compact Teledyne H1RG HgCdTe FPA and JDSU linear variable filter detector assembly leveraging OSIRIS REX OVIRS.

Adjustable Iris maintains footprint size at 10 km by varying FOV regardless of altitude

BIRCHES block diagram illustrates simplicity and flexibility of design.

Off the shelf tactical cryocooler with cold finger to maintain detector at ≤140K

Species	μm	description	
Water Form, Component		• • • • • • • • • • • • • • • • • • •	
water vapor	2.738	OH stretch	Barroll
	2.663	OH stretch	0.100
liquid water	3.106	H-OH fundamental	
	2.903	H-OH fundamental	
and the second	1.4	OH stretch overtone	
	1.9	HOH bend overtone	
	2.85	M3 Feature	
	2.9	total H2O	
hydroxyl ion	2.7-2.8	OH stretch (mineral)	
	2.81	OH (surface or structural)	a de la companya de l
		stretches	
	2.2-2.3	cation-OH bend	
	3.6	structural OH	
bound H2O	2.85	Houck et al (Mars)	0.090
	3	H2O of hydration	
	2.95	H2O stretch (Mars)	
	3.14	feature w/2.95	Water 🔰
adsorbed H2O	2.9-3.0	R. Clark	V
ice	1.5	band depth-layer correlated	
	2	strong feature	2600 2800 3000 3200 3400 3600
	3.06	Pieters et al	Wavelength (nm)
Other Volatiles			wavelengur (mm)
NH3	1.65, 2. 2.2	N-H stretch	Les Culte messagenents will not out
CO2	2, 2.7	C-O vibration and overtones	1 ice Cube measurements will not cut
H2S	3		off (Pieters et al. 2009) but encompass
CH4/organics	1.2, 1.7, 2.3,	C-H stretch fundamental and	pii (i leters et al. 2007) out elleonipass
and the second second	3.3	overtones	the broad 3 up band to distinguish
Mineral Bands			
pyroxene	0.95-1	crystal field effects, charge	pverlapping OH, water, and ice
	S. 84 34	transfer	features
olivine	1, 2, 2.9	crystal field effects	icaluics.
spinels	2	crystal field effects	
iron oxides	1	crystal field effects	
carbonate	2.35, 2.5	overtone bands	- 2011년 - 2011년 1월 18일 - 2011년 - 2011년 - 2011년 - 2011년 - 2011년 - 2011년
sulfide	3	conduction bands	
hydrated silicates	3-3.5	vibrational processes	
anticipate wavelength of pea	ak for water ab	sorption	
hand would be structural <h< td=""><td>ound<adsorbe< td=""><td>d<ice< td=""><td></td></ice<></td></adsorbe<></td></h<>	ound <adsorbe< td=""><td>d<ice< td=""><td></td></ice<></td></adsorbe<>	d <ice< td=""><td></td></ice<>	
	cana ausorbe		15 IceCube 9

IceCube utilizes a minimal DV transfer trajectory harnessing expertise of GSFC flight dynamics. **IceCube** lunar capture and science orbit designed by experienced GSFC flight dynamics team.

Busek lodine ion propulsion system

CubeSat Compatible Ion Propulsion PPU; (from top) DCIU, Housekeeping, Cathode/Valve, Grid HV, RF Generator & Power Ampilfier

1/16" Subminiature Electride Cathode as ion Beam Neutralizer; Heateriese, 5W Nominal

lodine Propellant Stored æ Solid Crystals; 300m Torr Storage Pressure

Thruster (BIT-3); 8 0W

Nominal System Input

Maxon RE-8 DC Motor (2x for 2-Axis Stage); Flight Qualified, 0.5W

Bus Components

Thermal Design: with minimal radiator for interior the small form factor meant that interior experienced temperatures well within 0 to 40 degrees centrigrade, except for optics box which has a separate radiator.

Communication, Tracking: X-band, JPL Iris Radio, dual X-band patch antennas, X-band dish (trade availability, cost, dB, and DSN compatibility, live with the fact this hasn't flown in deep space)

C&DH: very compact and capable Honeywell DM microprocessor, at least one backup C&DH computer (trade volume, complexity, cubesat heritage, live with the fact this hasn't flown in deep space)

GNC/ACS: multi-component (star trackers, IMU, RWA) packages with heritage available, including BCT XB1, which can interface with thrusters (trade cost, volume, cubesat heritage, live with the fact this hasn't flown in deep space)

Table 4: Lunar IceCube Subsystems						
System	Mass	Volume (in Us)	Power Use	Rad Tolerance	Dollars*	Source
Structures, Thermal Management	1.2 kg	6U Exterior & Rings	N/A	N/A	69K	MSU
C&DH: Proton 200K Lite/ Custom Daughter BCT XB1 for ACS Control	0.36 kg	0.75 U	5 W	>100 krad	240K	Space Micro BCT XB1 MSU
Harnesses, cables, coatings, elastomerics	0.5 kg	Conformal w/in structure	N/A	N/A	12K	MSU
Power (Solar panels & Gimbals MMA HaWK 72 W Array	0.340kg x 2 Deployed 0.190kg x 2 Fixed (Side)	Deployable panels intrude 10 mm into structure (each)	N/A	TBD	185K	MSU + MMA
Solar Panel Drive Articulators HoneyBee SADA	0.40 kg x 2	10 x 10 x 0.65 cm (Each) (0.25U)	5 W	10 krad	Included Above	Honeybee Robotics- MMA
EPS + Batteries MSU + TBD	2.4 kg	0.5 U	Quiescent Draw = 10 mW	> 10 krad	36K	MSU
Propulsion: Busek BIT- 3cm RF Ion Iodine	2.5 kg	2U	60W	TBD	1,000K	Busek
ACS/GNC: BCT XB1	2.1 kg	0.75 U	6.3W Cont.	TBD	250K	BCT XB1
Comms: JPL Iris	0.5 kg	0.5U + Antennas	12.8 W- Transponder 6.4 W- Receive	50 krad	500 K	JPL IRIS
IR Spectrometer	0.62 kg	1.5 U	<5 W	TBD	In budget	GSFC
Payload Processor: DM	0.350 kg	10 x 10 x 4 cm (0.25U)	2 W per processor continuous	Multiple processors (8) & middleware	68K	MSU/Honey well

丧

EM1 Selectees to Date					
Program	Target, Description	Payload	Lead		
HEOMD NEXT STEP	Moon, orbiter, Ice Cube	broadband IR cryocooled.	Morehead State U/NASA GSFC/Busek		
HEOMD AES	Lunar Flashlight orbiter. (Surface ices in permanently shadowed 'cold traps')	NIR instrument.	JPL		
HEOMD AES	Near Earth Asteroid Scout	Imager to characterize asteroid dynamics and surface	JPL		
HEOMD AES	BioSentinel	Radiation Exposure Induced Genetic Damage Experiment	NASA/Ames		
HEOMD NEXT STEP	??	???	Lockheed Martin		
SMD SIMPLEx					
STMD Centennial Challenges					

-

CLASS Cubesat Lunar Application Surface Station Concept (12U) (Assuming no RTGs)

Reduction in mass and power for LEMS as new concepts developed				
Design Regime	Conventional	MilSpec Cold	New Thermal	Compact
	Electronics	Electronics	Design	12U concept
Operational	-10	-40	-40	-40
Limit C				
Survival	-20	-50	-50	-50
Limit C	3			
Battery	240	120	30	5 (3U)
Mass kg		all Barris	run	
Remaining	260	260	70	12
Mass kg	18. 3. 1. 20		234 A 2 1 1	1
Total	500	380	100	15
Mass kg		1999 - 1999 -	1 - S 3 5 3	
Power W	50	30	65/10	10/2
peak/minimum	A.S. 2.	1. 1. 1. 1. 1. 1. 1.	1.6.19.3	P. S.
Night Duty Cycle	None	None	10%	>10%

Payload Concept: Based on preliminary work, with state of the art thermal design, a 5 U payload of compact instruments, such as a small particle analyzer, electrical field instrument, and UV spectrometer, could be supported in a 12 U package with cubesat bus and deployables for power generation and communication (4 U), and 3 U for battery volume. With alternative power storage systems under development, a larger payload might be possible.

Scaling Analysis: A 12U Cubesat would be roughly 1/6 the mass of an ALSEP-like (100 kg versus 15 kg) and, for two to three instruments, require about 1/6 the mass of batteries to support <1/6 of the power requirement (65 W versus <10 W). 2 Cubesat battery packs (2@ 20Ah) should be good for 20W/hour for 2 hours (5W for 8 hours) and require ³/₄ U volume. A 10% duty cycle over 14 days (32 hours) running at 5W/hour would require 4 times the battery volume (3U). A system requiring 10W/hour could run at a 5% duty cycle. Assuming a passive thermal design, this power level could allow operation of small particle analyzer, electrical field instrument, and UV spectrometer.

4/23/15

The Next Frontier: CubeSats for Deep Space 3rd International Workshop on LunarCubes November 13-15, 2013 – Palo Alto, CA

Lunar Science Illuminating the Universe

1st International Workshop on Scientific Opportunities in Cislunar Space

November 9th, 2014 - Tucson, AZ

BACKUP SLIDES

4/23/15

Every LunarCube Technology Challenges

Thermal/Mechanical, C&DH: Deep space thermal and radiation protection for the thermal (very cold to very hot) with associated mass and volume penalties. Months to years operation instead of days to months for CubeSat.

Solution: New thermally 'smart' materials and switches, new multi-layer insulating materials, extra shielding, radiation resistant electronic parts and design. New hybrid batteries with capability for operating at colder temperatures. Radiation hard by design architectures and rad tolerant components.

Communication: communication over far longer distances without supporting infrastructure available for LEO UHF, and with minimal onboard resources (mass, power, volume) for downlink.

Solution: In short run, focused data-taking and minimal navigation and tracking to minimize downlink bandwidth. In long run, use of infrastructure in form of existing landed assets or carrier at target (local DSN) to allow local data transmission and navigation. Use of onboard autonomous optical navigation. Use of laser communication where promising high bandwidth compact systems are being developed, but this requires a laser station infrastructure. Creation of communication network at GEO, and then at progressively further targets.

Every LunarCube Technology Challenges

Power Generation : many 10's watts power and energy storage during eclipse.

Solution: Next generation solar panels to generate up to 100W, special packaging of batteries.

Mobility/Transportation: LunarCube must be delivered beyond LEO as a secondary payload, with the necessity engaging in low energy transfer maneuvers, lunar capture and/changing orbit and will thus require reliable systems capable of efficiently generating kms/sec of delta-V.

Solution: The next generation of compact micropropulsion systems, including MEMS-based electrospray and MicroCathode, are already under development, and are capable of providing more efficient thrust, higher delta V, and higher precision maneuvering and attitude control once at the final destination.

Autonomy: Need for far more internal control, adaptable and stable operation, and 'smartness' for proliferating small systems, minimizing need for ground support.

Solution: Frontier Synthetic Neural System enabled Intelligent Decision Engine capable of learning and adapting in response to user demand and environmental changes.

Bus Components

Power:

compactly packaged Li-based batteries (e.g., GOM) that provide adequate power storage for longest 'eclipse' of sun in orbit;

electrical power system, for which many cubesat heritage options are available

Deployable solar panels, for which a number of choices are available (from top to bottom, turkey tail, cross, table, gimballed version of cross). Producers include MMA Design, Honeybee Robotics) Require >50 W running an active propulsion system, which should be more than adequate for other needs when propulsion system isn't running.

trade space cost, mass, reliablity, although volume of solar panels is in the 'cheat space' and doesn't count against 6U total

