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AeroCube-6

* AeroCube-6 is two 0.5U CubeSats.

* Science goal: measure spatial scales of
radiation in LEO.

* Launched: 19 June 2014 aboard Dnepr.
* Orbit: 620 x 700 km x 98 deg.

* Payload: 3 dosimeters on each satellite.

— Including 3 new variants that have never
flown before.

* Nominal sample rate is 1 Hz.
— Dosimeters A1 and B1 can burst at 10 Hz.

* Using differential drag to control
spacecraft in-track separation.

Dosimeter

Payload:

S/C | ID# | Dosimeter Measures

A 1 Thin Window Low >50 keV electrons &
LET Variant >600 keV protons

A 2 Thin Window High >600 keV protons
LET Variant

A 3 Standard Teledyne >1 MeV electrons &

>10 MeV protons

B 1 Thin Window Low >50 keV electrons &
LET Variant >600 keV protons

B 2 Thin Window High >600 keV protons
LET Variant

B 3 High LET Variant >10 MeV protons
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Features of AeroCube-6

* Radio (915 MHz, 1 W).

* Crosslink via radio.
— Functional up to 400 km range.

* GPS receiver.
— 20-meter fix accuracy.

* Magnetic torque rods.

* Magnetometers.

* Earth and Sun sensors.

* Nominal operation: Sun-pointing.
— Spin about Z-axis at ~30 deg/s.

— Protects payload from Sun
exposure.
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Systems Engineering Approach

* Applied Model Based Systems Engineering
(MBSE) to support early... @VS
— Concept trade space exploration, O

— Integration of thermal design into the system,

— Mass, power and link budget analysis for selected
Ssystem design,

— Identification of design drivers and problem areas,
— Requirements for fault tolerant flight software.

* MBSE uses linked subsystem models (analytical
and parametric) to drive the whole system design

Trade Analysis

of a satellite instead of using static documents. S

* System model provided first order systems
design analysis to support peer reviews and IRIRIAIRIRIRIRIRINIRIRIRININI B

milestone reviews. Power budget analysis
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Satellites inside of Satellites...
Step 1: AeroCube-6, alone

AeroCube-6 uses the 0.5U form factor, plus two deployable wings that include
experimental solar cells.
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Satellites inside of Satellites...
Step 2: AeroCube-6, mated
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The wings of each AeroCube-6 wrap around the body of the other, creating a
package that conforms to the 1U CubeSat standard.
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Satellites inside of Satellites...
Step 3: Integration into P-POD

The mated pair of AeroCube-6 was integrated into its P-POD with a 2U
companion from another institution.
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Satellites inside of Satellites...
Step 4: P-POD Integration into UniSat-6

The P-POD was then integrated into UniSat-6, a carrier and stand-alone
satellite built by GAUSS.
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Satellites inside of Satellites...
Step 5: UniSat-6 Integration onto Dnepr

UniSat-6 was then mated to the Dnepr launch vehicle.
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Ride to Orbit

+23 hours

Photo: DLR, CC-BY 3.0
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The spring-loaded separation mechanism
induced a 12 km/day in-track drift
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Crosslink Results

* Sending and receiving of
pre-packaged message

* |Low cost, minor recode of
existing space-to-ground dual whip
radio dipole

* Range limited by low gain
antenna patterns

single whip
monopole

Dual Antenna Configuration

[ 1.2 kbps crosslink demonstrated up to 400 km. ]
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Magnetic Attitude Control

* Magnetic torque rods provide all attitude
control.
* Two nominal operational profiles:
— Sun-pointing: drive 1, 4t0 Sun.
* Largely constant throughout orbit.
— Differential drag: drive 1 .,,,along pre-defined

profile.
* Choose 7 .,,4 10 min/maximize drag. \
* Changes rapidly over one orbit. R Velocity (relative
* Cannot point >30 deg from Sun. n.nd to rotating
* Good tracking performance cannot be AC6 pointing ~ atmosphere)

guaranteed for arbitrary fi .mq at every instant (Uit vecton

due to magnetic field constraint and limited
torque.
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Attitude Control Performance

* Challenge: control law allows spin

rate to vary while spin axis points at

target.

— When satellite reaches maximum spin
rate (40 deg/s), control must pause to
de-spin.

Plots at right show example optimal

(i.e., commanded) vs. measured

differential drag profile.

— ACG6A was following the minimum
drag profile.

Typical pattern: follow profile closely

for ~20 min, pause to de-spin, then

catch up.
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Ratio of BSTAR

Differential Drag Performance
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0.12 ACG6: Difference in Semimajor Axis (AC6B - AC6A)

Uncontrolled interval caused a
spike in semimajor-axis difference.
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“Ratio of BSTAR”is the drag ratio of AC6B to AC6A. If the ratio = 1, there is no differential.

While the semimajor axis difference

is negative, the two spacecraft are closing.
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In-Track Separation vs. Time

AeroCube-6: In-Track Formation since July 2014
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Sample Dosimeter Results

ACG6 investigating spatial and temporal behavior of radiation environment.
Thousands of orbits of data have been collected thus far.

A1: >50 keV e-, >600 keV H+ A2: >600 keV H+
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Seeking Fine Spatial Structure in LEO Radiation Belts

Having two spacecraft at a well-known in-track separation provides heretofore
unavailable information on the fine structure of the LEQO radiation belts.

Aerocube 6
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ACB6-B data were shifted back in time by 65 seconds (relative to AC6-A)

Two spacecraft measuring the same
variability strongly suggests the existence
of fine spatial structure.
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Conclusions

* AeroCube-6 on orbit for 10 months and still going strong.

* Demonstrates a CubeSat mission explicitly planned as a testbed for
mission assurance and advancing TRL of payloads.

* Form follows function: model-based systems engineering showed
that the mission could be done in 0.5U.

— Saves on cost and complexity.
* For modest attitude control needs, magnetic systems are adequate.

* Differential drag remains a potent tool for formation control with
CubeSats.

— For many missions, chemical/electric propulsion is overkill.

* Making journal-worthy discoveries with only a pair of 0.5U
CubeSats.
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