The Plasma Ambipolar Thruster for Responsive In-Orbit Transfers (PATRIOT) Mission

<u>J. P. Sheehan</u>, Benjamin W. Longmier, and James Cutler

Outline

- Propelled nanosatellite missions
- The CubeSat Ambipolar Thruster (CAT)
 - Design
 - Magnetic field
 - Initial firing
- Micronewton thrust stand
- PATRIOT mission goals

Maneuverable CubeSats could enable many new missions

- Previously inaccessible orbits
 - Orbits that are not accessed by launch vehicle
 - Highly elliptical orbits
 - Geostationary orbits
 - Polar orbits
 - Earth-Moon, Earth-Sun Lagrange points
- Cluster formation flying
- Long-lived low altitude orbits

Credit: NASA

CubeSat Ambipolar Thruster (CAT)

- ~0.6U for thruster
- Mass: <1 kg
- 0.4U 0.9U for propellant tank
- Uses "free" spring space

- ~1U for spacecraft controls
- 0.5U 1.0U for instruments
- Powered by 10s of V
- 10 50 W, assisted by batteries

Plasma liner contains plasma, directs flow of gas

- Quartz tolerates high temperatures
- Showerhead disperses gas, protects downstream elements from plasma
- Physical nozzle follows magnetic nozzle

Antenna generates plasma, heats electrons

- 3D printed
 - Complex geometries possible
- Solid silver to maximize conductivity
- Helical half-twist
 - Ideal for launching helicon
- Power leads connect to RF source
- Couples RF energy into electrons via helicon plasma wave

Faraday shield contains RF, encases thruster

- 3D printed
 - Low cost
 - Rapid iteration
- Titanium
- Contains RF within thruster
- Structural support for liner, magnets

Fully assembled CAT engine

Magnetic nozzle replaces physical rocket nozzle

Measurements match simulations to within 10%

- Permanent magnets
 - No power requirements
 - Currently NdFeB
 - SmCo for higher Curi temperature
- Maximum strength in device of 800 G
- Net dipole moment of 55 A·m²
 - Dipole cancelation designs
- Earth's gravity takes over at ~40 cm

Xenon testing: plasma follows magnetic field lines

Beam-deflection micronewton thrust stand

- Measure 10s mN, resolution
 10s μN
- Thruster supported on mount plate
 - Thrust moves plate, deflects thin beams
 - Euler-Bernoulli beam theory
- Deflection measured by optical displacement sensor (obscured)
 - Tensionless gas feed system

Tensionless gas connector

- Deliver gas without restricting motion
- Coaxial feed design
- Viscous, non-volatile liquid
 - Galinstan: eutectic metal
- Liquid damps oscillations
- Similar design in development for RF

PATRIOT mission will test CAT on orbit

- Objectives
 - Turn CAT on
 - Thrust measurement
 - Observable orbit change
 - Earth escape
- Multiple flights
- Non-propulsion requirements
 - Long range communications
 - Power systems
 - Attitude control
 - RF shielding

Conclusions

- CAT's magnetic field is consistent with predictions to within 10%
- Inductive discharge achieved in prototype device
- Novel thrust stand in development
- Wide variety of propellants being explored

Design procedure and parameters

Power	10 - $50~\mathrm{W}$
Flow Rate	5 - 15 sccm
Density (max)	$10^{14} {\rm ~cm^{-3}}$
B Field (max)	800 G
I_{sp}	$400-800~\mathrm{s}$
Efficiency	10%-40%
Thrust	0.5-4 mN
ΔV	$1-2 \mathrm{~km/s}$

- Design begins from power requirements
- Plasma density, B field driven by helicon dispersion relation
- Approximate performance parameters for 3U CubeSat, xenon propellant

Magnets create convergingdiverging magnetic field

- NdFeB permanent ring magnets
- Magnetic field at throat: 800G
- Decays to Earth's magnetic field in 40 cm
- Plasma detaches at
 0.5 G at the furthest
- Nozzle efficiency: 83%

Note: figure does not represent final magnet design

Passive magnetic stabilization

Earth escape from LEO firing from perigee

Thrust stand for micronewton force measurements

Mission to Europa: 6U CubeSat, double CATs

Ambipolar ion acceleration mechanism

- Electrons heated by helicon wave
- Electrons rush out of nozzle
- Slow ions dragged along by E field
- Electrons lose thermal energy to ion kinetic energy
- Higher electron temperature → higher ion velocity
- $E_{ion} = 2T_e$
- Mechanism is critical for thrust, performance models

Quasi-1d3v particle-in-cell simulations in development

- Axial spatial dimension
- Axisymmetric
- Magnetic mirror forces accounted for

$$B_r = -\frac{r_L}{2}\frac{\partial B_z}{\partial z}$$

- Modified semi-implicit Boris algorithm particle mover
- Verification campaign nearly completed
 - Two-stream instability (right)
 - Sheath
 - Magnetic mirror

Solid storable propellants greatly reduce volume requirements

- Gases: xenon, krypton, argon
 - Benchmark testing
 - Flight certified hardware
 - Miniature flow systems
- Solids and liquids: no pressure vessel
- Solid/liquid propellants
 - Water
 - Galinstan
 - Mercury
 - Iodine
- Iodine propellant system
 - Solid storable
 - Heat to control vapor pressure/mass flow rate

