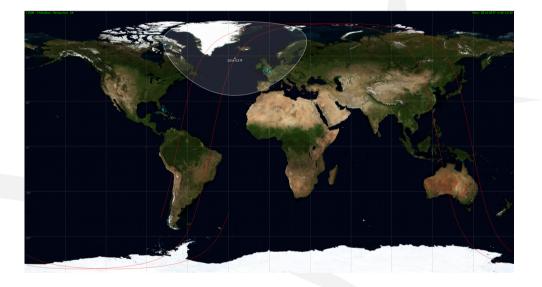
Rapid Development and Test for UKube-1 using Software and Hardware-in-the-Loop Simulation

Peter Mendham and Mark McCrum


UKube-1

- United Kingdom Universal Bus Experiment
- 3U CubeSat
- Five payloads
 - C3D imager
 - JANUS radiation
 - MIC FPGA-based processor
 - TOPCAT GPS occultation
 - FUNTRX AMSAT transceiver
- Experimental platform (e.g. S-Band Transmitter)
- Launched 8th July 2014

ascensio

Operational Challenges

- Many challenges common to CubeSats
- Low link budget
 - One (primary) ground station
 - Low up/downlink bandwidth
 - Short passes
- Lots of data
 - Many experimental systems
 - Multi-MB of payload data
- Limited operations
 - As "hands-off" as possible
 - Need flexible control over low-level aspects of system
 - Need lots of automation: time-based, orbit based, event-based, onboard scripting

3/14

ascen

Validating Operations

- Very limited partial engineering model of satellite
 - Intended for ground station validation
 - Does not include many platform elements
 - No payloads included
- Cannot use EM for operations support
 - e.g. script or schedule validation
- Cannot use EM for operator training
 - Too incomplete for basic platform operations
 - Main operational focus is payloads
- Need a simulation of the spacecraft to support operations

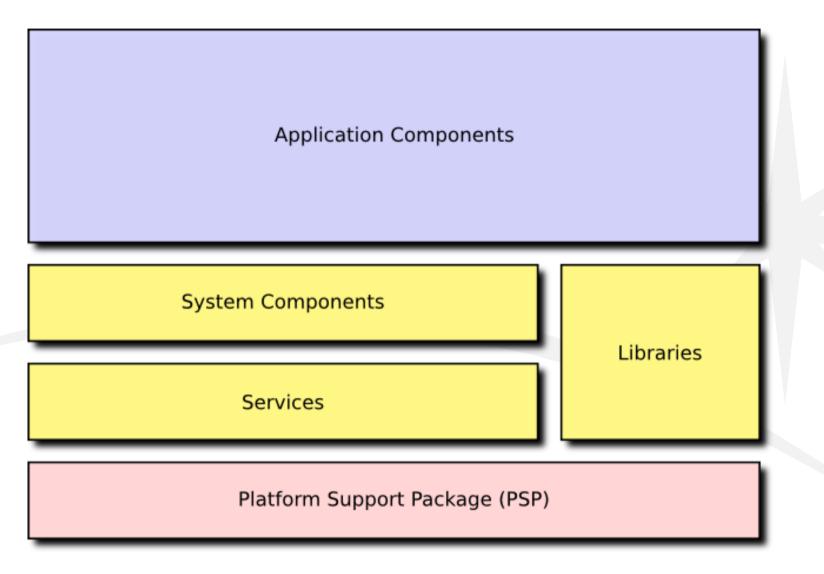
4/14

02/08/2014

Spacecraft Simulation

- Typical satellite simulators are expensive
 - Timing-accurate
 - High-fidelity
 - Linked with complex models of hardware and space environment
 - Time consuming to create
- "CubeSat approach" to simulation
 - Functionally accurate
 - Not timing accurate
 - Only essential hardware functions simulated
 - Modular
 - Permit hardware-in-the-loop to add fidelity

GenerationOne Software


- UKube-1 flight software
 - GenerationOne Software Development Kit and Tooling
 - Component-based
 - All components abstracted from underlying platform
 - Components portable across platforms and operating systems without modification
 - Rapid assembly of flight software
- Operating system abstraction
 - Real-time tasking abstraction based on widely-accepted, robust model (RCM)
- I/O and Device Abstraction
 - Based on CCSDS standards for onboard interfacing abstraction

6/14

Drigni

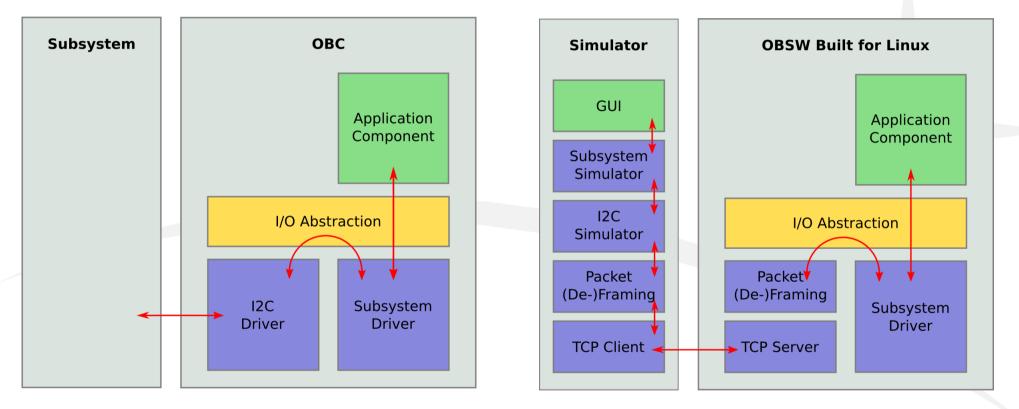
ascensi

GenerationOne Architecture

Rapid Development and Test for UKube-1

Abstraction for Simulation

- Abstraction features of GenerationOne were crucial for simulation
 - Rebuild flight software for target simulation platform (e.g. desktop Linux)
 - Component implementations do not change
 - Assembly of application components does not change
- Can swap low-level bus interfacing components without affecting subsystem code
 - Replace onboard I²C bus with TCP/IP to simulator



Hardware Simulation

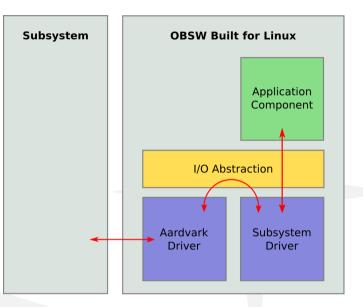
Flight

02/08/2014

Simulation

bright <u>*</u> ascension

UKube-1 Simulator


- Modular simulator
- Implemented in Java (e4)
- Allows control of simulation
- Interaction with hardware devices
 - In real time
- Monitoring of simulated hardware status
 - Error alerts etc.
 - Invalid conditions (e.g. over-power)
- Interface to Mission Control Software identical to flight system

Subsystems	Parameters		
JE FUNTRX-RF	Name	Value	Value (Hex)
🚍 STX	IEC ON	0	0
🚍 SWB	Imager number	1	0001
UVTRX-IMC	Integration time integer part	0	0000
🗐 UVTRX-ITC	Grab command	0	0000
🔻 🔎 Payload I2C	Auto expose flag	1	0001
and C3D	Healthcheck status	0	0000
aunal 🚍	Temperature set point	615	0267
🚍 MIC	TEC on	0	0000
🚍 TOPCAT	Compression flag	1	0001
🔻 🔎 SPI	Thumbnail flag	1	0001
🚍 MIC	RDM Mode number of samples	1	0001
🚍 STX	RDM Mode sample interval	1	0001
Simulator Console OBSW Console			
FUNTRX-PA: Initialised			
FUNTRX-RF: Initialised			
EPS: Clearing watchdog			
EPS: Clearing watchdog			
EPS: Clearing watchdog			
Transmit CW Message: UKUBE1020/	40000000078		
EPS: Clearing watchdog			
EPS: Clearing watchdog			

Hardware in the Loop

- The same principles can be used to include hardware in the loop
- GenerationOne support for USB to bus adapters
 - e.g. USB to I2C Total Phase Aardvark
- Pick and choose which hardware to place in the loop
- Can also run flight software on OBC and simulate all subsystems
- Also useful for development, testing, prototyping etc.

Simulator in Use

- Simulator in regular use at the UKube-1 Mission Operations Centre
 - Rutherford Appleton Laboratory (RAL Space) team
 - LEOPS based at Chilbolton Observatory
- Operations team very pleased with results
- Excellent cost-benefit trade-off

Conclusions

- Simulation can be a useful tool for
 - Operation planning and support
 - Other development phases
- From cost-benefit trade-off we suggest that a functional simulation is best
 - Not timing accurate
 - In some cases results must be carefully interpreted
 - Significantly cheaper than timing-accurate simulation
- Higher fidelity can be achieved through insertion of hardware in the loop
- A well-designed software framework makes using the flight software for simulation trivial
- Currently generalising UKube-1 simulation framework for use on other missions

ascer

Contact Us

Question, comments or suggestions

Bright Ascension Ltd

www.brightascension.com enquiries@brightascension.com +44 (0) 1382 602041

bright

ascensior