

a.i. solutions SmallSat Formation Flying Testbed

CubeSat Workshop 2014

Smarter approaches. Better results.

• Ultimate Goal:

- Create Onboard Autonomous Formation Flight Capability for Small Spacecraft
- Goals Along The Way:
 - Encapsulate existing knowledge and gain new knowledge in:
 - Formation Control
 - Attitude Control
 - Flight Software

The Big Picture – How We Are Getting There

- Developing a Closed-Loop Formation Flying Testbed to:
 - Simulate spacecraft dynamics for N-spacecraft
 - Simulate RTOS Flight Software (FSW) for N-spacecraft with realistic memory and processor constraints
 - Simulate inter-spacecraft communications

Potential Applications of ...

- Closed-Loop Formation Flying Testbed:
 - Formation Design & Analysis
 - FSW Design & Testing
- Onboard Autonomous Formation Flight Capability for Small Spacecraft:
 - Inexpensive stereo imaging of objects of interest
 - Asteroids
 - Space Debris
 - Earth
 - Distributed spatial measurement experiments
 - Sparse-aperture telescopes
 - Gravity mapping
 - Magnetic field mapping
 - Lower Thermosphere/Upper Mesosphere atmospheric research
 - Advanced maneuvering
 - Autonomous collision avoidance
 - Autonomous docking

Dynamics Simulator (DSim) Flight Software (FSW) Shared Object Server (SOS)

R&D Activities 2014

DYNAMICS SIMULATOR (DSIM)

Purpose: DSim is a software application that enables simulation of rigid body dynamics with a task-based interface.

• Coded in Python

- Extensibility and Optimization with Cython
- Symbolic equations of motion (EoM)'s using SymPy
- Dynamic EoM's with Kane's method
- Task execution framework

Component Library										
Scenes	Bodies	Controllers	Estimators	Dynamics Models	Propagators	Force Models	Sensors Actuators			

Component Library									
Scenes	Bodies	Controllers	Estimators	Dynamics Models	Propagators	Force Models	Sensors Actuators		

Component Library										
Scenes	Bodies	Controllers	Estimators	Dynamics Models	Propagators	Force Models	Sensors Actuators			

Component Library										
Scenes	Bodies	Controllers	Estimators	Dynamics Models	Propagators	Force Models	Sensors Actuators			

Component Library										
Scenes	Bodies	Controllers	Estimators	Dynamics Models	Propagators	Force Models	Sensors Actuators			

Component Library										
Scene	Bodies	Controllers	Estimators	Dynamics Models	Propagators	Force Models	Sensors Actuators			

DSim Use Case – Spacecraft Kinematics

DSim Use Case – Simulate Inverted Pendulum

DSim Use Case – Simulate Inverted Pendulum

NAV FLIGHT SOFTWARE (FSW)

NAV FSW – High Level Architecture

Purpose: The NAV FSW is the navigation system prototype that is the first component of the GN&C flight software system.

- Overall design complete
- High level prototype working with estimation of simple harmonic oscillator
- Implemented in Python and running in Linux for prototyping purposes

SHARED OBJECT SERVER (SOS)

SOS – High Level Description

Purpose: The SOS is a networking architecture designed to enable communication between FSW instances.

- Powered by node.js
- Uses ZeroRPC for remote Python—to-Python communication
- Provides network visualization feature to graphically represent the formation

DSIM + FSW + SOS = FORMATION FLYING TESTBED

Formation Flying Testbed Vision

• Goals:

- Simulate a formation of spacecraft by spawning N virtualized FSWs
- Model the formation dynamics with DSim
- Enable communication between nodes with SOS

Autonomous Operations Swarm Dynamics FSW Testing

Planned R&D Activities 2015

Planned R&D Activities 2015

 Implement autonomous operations algorithms

FSW in the Loop Testing

Investigate Swarm Dynamics