Towards an Open-source Ground Stations Network for CubeSats

> authors: Dr. Ricardo Tubío Dr. Antonio J. Vázquez Prof. Jordi Puig Dr. Naomi Kurahara Prof. John Bellardo

:tubiopa@calpoly.edu

04/25/2014

The SATNet Project

spring 2014

spring 2014

Contents

State of the Art

 Ground Station Networks
 Current Ground Stations

 The SATNet Project

 Concept
 Organization
 Release 1

spring 2014

3/23

State of the Art

Ground Station Networks

Mercury (USA)

4/23

Network Paradigm: client server.

- Provides; remote GS operation.
- GPLv2 version from 2003 at SourceForge
- Scalability?
- Scheduling?

Mercury (USA)

- Network Paradigm: client server.
- Provides: remote GS operation.
 - GPLv2 version from 2003 at SourceForge.
- Scalability?
- Scheduling?

Mercury (USA)

- Network Paradigm: client server.
- Provides: remote GS operation.
- GPLv2 version from 2003 at SourceForge.

Scalability?

Scheduling?

Mercury (USA)

- Network Paradigm: client server.
- Provides: remote GS operation.
- GPLv2 version from 2003 at SourceForge.
- Scalability?
- Scheduling?

Mercury (USA)

- Network Paradigm: client server.
- Provides: remote GS operation.
- GPLv2 version from 2003 at SourceForge.
- Scalability?
- Scheduling?

spring 2014

The GSN Network (Japan)

5/23

Network Paradigm: client-server.

GMS: Ground Station
 Management Service.
 GROWS: GS Remote
 Operation Web Service.

Scalability?

Scheduling?

spring 2014

The GSN Network (Japan)

5/23

Network Paradigm: client-server.

 GMS: Ground Station Management Service.

GROWS: GS Remote Operation Web Service.

Scalability?Scheduling?

The GSN Network (Japan)

5/23

Network Paradigm: client-server.

- GMS: Ground Station Management Service.
- GROWS: GS Remote
 Operation Web Service.

Scalability?Scheduling?

The GSN Network (Japan)

5/23

Network Paradigm: client-server.

- GMS: Ground Station Management Service.
- GROWS: GS Remote
 Operation Web Service.
- Scalability?

Scheduling?

The GSN Network (Japan)

5/23

Network Paradigm: client-server.

- GMS: Ground Station Management Service.
- GROWS: GS Remote
 Operation Web Service.
- Scalability?
- Scheduling?

6/23

Network Paradigm: legacy GCA network.

- 2 independent servers (scalability?).
 VPN connection with clients.
- Centralized supervised scheduling
- Project by the Naval Postgraduate School.
- Propietary software license.

6/23

Network Paradigm: legacy GCA network.

 2 independent servers (scalability?).

VPN connection with clients.

Centralized supervised scheduling

- Project by the Naval Postgraduate School.
- Propietary software license.

6/23

Network Paradigm: legacy GCA network.

- 2 independent servers (scalability?).
- VPN connection with clients.

Centralized supervised scheduling

- Project by the Naval Postgraduate School.
- Propietary software license.

Network Paradigm: legacy GCA network.

- 2 independent servers (scalability?).
- VPN connection with clients.
- Centralized supervised scheduling.
- Project by the Naval Postgraduate School.
- Propietary software license.

Network Paradigm: legacy GCA network.

- 2 independent servers (scalability?).
- VPN connection with clients.
- Centralized supervised scheduling.
- Project by the Naval Postgraduate School.
- Propietary software license.

Network Paradigm: legacy GCA network.

- 2 independent servers (scalability?).
- VPN connection with clients.
- Centralized supervised scheduling.
- Project by the Naval Postgraduate School.
- Propietary software license.

The GENSO Network (Europe)

spring 2014

 Network Paradigm: hybrid peer-to-peer (P2P).

AUS: central authentication.
 MCC/GSS: distributed peers.

Distributed scheduling.

 Transport through audio transmission.

> Problems with delay and jitter?

The GENSO Network (Europe)

spring 2014

Network Paradigm: hybrid peer-to-peer (P2P).

> AUS: central authentication.

Distributed scheduling.

 Transport through audio transmission.

> Problems with delay and jitter?

The GENSO Network (Europe)

spring 2014

Network Paradigm: hybrid peer-to-peer (P2P).

- AUS: central authentication.
- MCC/GSS: distributed peers.
- Distributed scheduling.
- Transport through audio transmission.

Problems with delay and jitter?

The GENSO Network (Europe)

spring 2014

 Network Paradigm: hybrid peer-to-peer (P2P).

- AUS: central authentication.
- MCC/GSS: distributed peers.

Distributed scheduling.

 Transport through audio transmission.
 Problems with delay and litter?

The GENSO Network (Europe)

spring 2014

 Network Paradigm: hybrid peer-to-peer (P2P).

- AUS: central authentication.
- MCC/GSS: distributed peers.

Distributed scheduling.

 Transport through audio transmission.

> Problems with delay and jitter?

The GENSO Network (Europe)

spring 2014

 Network Paradigm: hybrid peer-to-peer (P2P).

- AUS: central authentication.
- MCC/GSS: distributed peers.

Distributed scheduling.

- Transport through audio transmission.
 - Problems with delay and jitter?

The GENSO Network (Europe)

spring 2014

Network Paradigm: hybrid peer-to-peer (P2P).

- AUS: central authentication.
- MCC/GSS: distributed peers.

Distributed scheduling.

- Transport through audio transmission.
 - Problems with delay and jitter?
- Network connectivity problems (NAT)?

spring 2014

Rotators nasin Phasing controlle line FM FM VHF Tracking UHF/VHF CI-V card Transceiver Pointing AX.25 TCP / IP TNC Ground Station Mission Control Center

 Specific per-mission hardware support.
 Not many problems for constructing a new station.
 Networks with a full GS client.

9/23

Some clients might be an obstacle to access the network.

- Specific per-mission hardware support.
- Not many problems for constructing a new station.
 - Networks with a full GS client:

GS \rightarrow you are in. SW inadequate \rightarrow you are out.

Some clients might be an obstacle to access the network.

- Specific per-mission hardware support.
- Not many problems for constructing a new station.
- Networks with a full GS client:
 - SW fits GS → you are in.
 SW inadequate → you are out.
- Some clients might be an obstacle to access the network.

- Specific per-mission hardware support.
- Not many problems for constructing a new station.
- Networks with a full GS client:
 - SW fits GS → you are in.
 SW inadequate → you are out.
- Some clients might be an obstacle to access the network.

- Specific per-mission hardware support.
- Not many problems for constructing a new station.
- Networks with a full GS client:
 - SW fits $GS \rightarrow you$ are in.
 - SW inadequate \rightarrow you are out.
- Some clients might be an obstacle to access the network.

- Specific per-mission hardware support.
- Not many problems for constructing a new station.
- Networks with a full GS client:
 - SW fits $GS \rightarrow you$ are in.
 - SW inadequate \rightarrow you are out.
- Some clients might be an obstacle to access the network.

spring 2014

The SATNet Project

Concept

Network Architecture (1)

Network Paradigm: distributed servers.

N-System: main network node.
G-Client: ground station client.
M-Client: mission operation client.

 Services provided by the central N-System.
 Clients: remote access library.

Network Architecture (1)

Network Paradigm: distributed servers.

 N-System: main network node.

G-Client: ground station

M-Client: mission operation client.

 Services provided by the central N-System.
 Clients: remote

access library.
Network Architecture (1)

Network Paradigm: distributed servers.

- N-System: main network node.
- G-Client: ground station client.

M-Client: mission operation client.

 Services provided by the central N-System.
 Clients: remote

access library.

Network Architecture (1)

Network Paradigm: distributed servers.

- N-System: main network node.
- G-Client: ground station client.

 M-Client: mission operation client.

 Services provided by the central N-System.
 Clients: remote access library.

Network Architecture (1)

 Network Paradigm: distributed servers.

- N-System: main network node.
- G-Client: ground station client.

M-Client: mission operation client.

 Services provided by the central N-System.

 Clients: remote access library.

Network Architecture (1)

- Network Paradigm: distributed servers.
 - N-System: main network node.
 - G-Client: ground station client.

M-Client: mission operation client.

- Services provided by the central N-System.
- Clients: remote access library.

Network Architecture (2)

12/23

 Each central node creates an isolated sub-network.

 Approach similar to IF routers.
 Users decide to interconnect nodes for scaling sub-networks.
 Nodes

interconnection:

- scalability,
- redundancy
- and privacy.

Network Architecture (2)

12/23

Each central node creates an isolated sub-network.

Approach similar to IP routers.

Users decide to interconnect nodes for scaling

- sub-networks.
- Nodes interconnection:
 - scalability,
 - redundancy,
 - and privacy.

- Each central node creates an isolated sub-network.
- Approach similar to IP routers.
- Users decide to interconnect nodes for scaling sub-networks.

Nodes interconnection:

- scalability,
- redundancy
- and privacy.

- Each central node creates an isolated sub-network.
- Approach similar to IP routers.
- Users decide to interconnect nodes for scaling
 - sub-networks.
- Nodes interconnection:
 - scalability,
 - redundancy,
 - and privacy.

- Each central node creates an isolated sub-network.
- Approach similar to IP routers.
- Users decide to interconnect nodes for scaling
 - sub-networks.
- Nodes interconnection:
 - scalability,
 - redundancy,
 - and privacy.

- Each central node creates an isolated sub-network.
- Approach similar to IP routers.
- Users decide to interconnect nodes for scaling
 - sub-networks.
- Nodes interconnection:
 - scalability,
 - redundancy,
 - and privacy.

- Each central node creates an isolated sub-network.
- Approach similar to IP routers.
- Users decide to interconnect nodes for scaling
 - sub-networks.
- Nodes interconnection:
 - scalability,
 - redundancy,
 - and privacy.

Comparison

spring 2014

-	Mercury	GSN	MC3	GENSO	SATNet
Paradigm	Client Server	Client Server	Legacy GCA	Hybrid P2P ¹	Distributed Network
Remote GS	data	data	data	audio	data ²
Federation	yes	414	yes	7 MAS	yes
Scheduling			Central	Distributed	Hybrid ³
Security	- //		Central	-	Distributed ⁴
Sources	Source Forge (2003)		1		GitHub
License	GPLv2	1 -	-	-	Apache v2

Initially P2P, finally central server (AUS entity).

²Custom protocols in between clients.

 $^3\ensuremath{\text{Distributed}}$ through the central nodes, similar to a cloud computing approach.

⁴Through different subnetworks.

spring 2014

Organization

Development Philosophy

15/23

GitHub

Fundación Barrié

 Open source (Apache V2).

development:

GitHub Project:

- Feel free to join us!
- First node to be hosted at CalPoly.

Development Philosophy

15/23

GitHub

Fundación Barrié

 Open source (Apache V2).

Incremental software development:

4 software releases: 1 relase, 1 subset of functionalities. GitHub Project: gitte com/satuetproject

- Feel free to join us!
- First node to be hosted at CalPoly.

Development Philosophy

15/23

GitHub

Fundación Barrié

 Open source (Apache V2).

- Incremental software development:
 - 4 software releases.
 1 relase, 1 subset of functionalities.
 GitHub Project:
- Feel free to join us!
- First node to be hosted at CalPoly.

Development Philosophy

15/23

GitHub

Fundación Barrié

 Open source (Apache V2).

Incremental software development:

- 4 software releases.
- 1 relase, 1 subset of functionalities.
- GitHub Project:
- Feel free to join us!
- First node to be hosted at CalPoly.

15/23

GitHub

Fundación Barrié

 Open source (Apache V2).

Incremental software development:

- 4 software releases.
- 1 relase, 1 subset of functionalities.
- GitHub Project:

github.com/satnetproject

- Feel free to join us!
- First node to be hosted at CalPoly.

15/23

GitHub

Fundación Barrié

 Open source (Apache V2).

Incremental software development:

- 4 software releases.
- 1 relase, 1 subset of functionalities.
- GitHub Project:
 - github.com/satnetproject
- Feel free to join us!
- First node to be hosted at CalPoly.

15/23

GitHub

Fundación Barrié

 Open source (Apache V2).

Incremental software development:

- 4 software releases.
- 1 relase, 1 subset of functionalities.
- GitHub Project:
 - github.com/satnetproject
- Feel free to join us!

First node to be hosted at CalPoly.

15/23

GitHub

Fundación Barrié

 Open source (Apache V2).

- Incremental software development:
 - 4 software releases.
 - 1 relase, 1 subset of functionalities.
- GitHub Project:
 - github.com/satnetproject
- Feel free to join us!
- First node to be hosted at CalPoly.

R#	Date	Management	Scheduling	Communications	Additional
R1	June 2014	User registration	Basic booking	Assisted	
		Basic configuration			
R2	December 2014	Full configuration	Assisted	Non-scheduled	Scalability
					Key distribution
R3	July 2015	Information service	Private	Private	
R4	September 2015				Testing

Architecture

■ Standalone Node → Private Subnetworks.

 WebServices with Diango (Python 2.7)
 Database: MySQL.

Communications Service:

> Daemon protocol, Twisted over TLS.
> Better performance for lower delay.

Architecture

 WebServices with Django (Python 2.7).

Database: MySQL

Communications Service:

> Daemon protocol, Twisted over TLS.
> Better performance for lower delay.

Architecture

18/23

 WebServices with Django (Python 2.7).
 Database: MySQL.

Clustering possibility for redundancy.

- Communications Service:
 - Daemon protocol, Twisted over TLS.
 Better performance for lower delay.

Architecture

18/23

- WebServices with Django (Python 2.7).
- Database: MySQL.
 - Clustering possibility for redundancy.

Communications Service:

> Daemon protocol, Twisted over TLS.
> Better performance for lower delay.

Architecture

• Standalone Node \rightarrow **Private Subnetworks**.

18/23

- WebServices with Django (Python 2.7).
- Database: MySQL.
 - Clustering possibility for redundancy.
- Communications Service:
 - Daemon protocol, Twisted over TLS.
 - Better performance for lower delay.

Architecture

- WebServices with Django (Python 2.7).
- Database: MySQL.
 - Clustering possibility for redundancy.
- Communications Service:
 - Daemon protocol, Twisted over TLS.

Better performance for lower delay.

Architecture

18/23

- WebServices with Django (Python 2.7).
- Database: MySQL.
 - Clustering possibility for redundancy.
- Communications Service:
 - Daemon protocol, Twisted over TLS.
 - Better performance for lower delay.

Architecture

18/23

- WebServices with Django (Python 2.7).
- Database: MySQL.
 - Clustering possibility for redundancy.
- Communications Service:
 - Daemon protocol, Twisted over TLS.
 - Better performance for lower delay.
- Operating system: Debian Wheezy.

Screenshot - Database Design

spring 2014

Screenshot - Add GS

20/23

(+) Add Ground Station

Owner: rtubio

STEP 1: Set location

STEP 2: Define your station

Identifier:	
Callsign:	
Elevation (deg):	

Screenshot - Add Channel

21/23

spring 2014

	Channel Co	nfiguration	
. Configurati <mark>on</mark>	Name ([a-zA-Z0-9]{6,9})	Modulation:	
	ch-fm-2	FM Frid	
	Operation band:	X Delete	
Ge-caboly	UHF / U / 435.000000 / 4 0	65 7 P Ch	
		Bitrate (bps):	
		300	
Communication Cha		900	
		1200 💌	
		Bandwidth (kHz):	
		12.500	
u-fm-1		25.000	
		1.00	
		Polarization:	
Channels Sch		Any	
		RHCP	
	Submit Cancel		

Screenshot - GS & Channels

22/23

Configuration i≪ Edit Radio Callsign: gscalp900 × Delete as-calpoly Contact elevation (deg): 10.50 The SATNet Network Coordinates: (35.3804, -120.4565) ∉ +Ch **Communication Channels** Profile IARU band: 70 cm Modulation(s): EM 3< Edit Bitrate(s): 600 900 AMSAT letter: U Bandwidth(s): 12,500 × Delete u-fm-1 (435.000000, 438.000000) Polarization(s): Any +(0):2014-02-22==2014-02-22:00:45:00==01:15:00 IABLI band: 70 cm Modulation(s): FM ∦ Edit Bitrate(s): 300 900 1200 AMSAT letter: U Bandwidth(s): 25.000 × Delete (435.000000, 438.000000) Polarization(s): Any (no rules for ch-fm-2) **Channels Schedule**

spring 2014

23/23

Thanks for your attention!